Regulated intramembrane proteolysis (RIP) describes the protease-dependent cleavage of transmembrane proteins within the hydrophobic core of cellular membranes. Intramembrane-cleaving proteases (I-CliPs) that catalyze these reactions are found in all kingdoms of life and are involved in a wide range of cellular processes, including signaling and protein homeostasis. I-CLiPs are multispanning membrane proteins and represent challenging targets in structural and enzyme biology. Here we introduce iCLiPSpy, a simple assay to study I-CLiPs in vivo. To allow easy detection of enzyme activity, we developed a heme-binding reporter based on TNFα that changes color after I-CLiP-mediated proteolysis. Co-expression of the protease and reporter in Escherichia coli (E. coli) results in white or green colonies, depending on the activity of the protease. As a proof of concept, we use this assay to study the bacterial intramembrane-cleaving zinc metalloprotease RseP in vivo. iCLiPSpy expands the methodological repertoire for identifying residues important for substrate binding or activity of I-CLiPs and can in principle be adapted to a screening assay for the identification of inhibitors or activators of I-CLiPs, which is of great interest for proteases being explored as biomedical targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024687 | PMC |
http://dx.doi.org/10.1038/s42003-023-04654-z | DOI Listing |
Commun Biol
March 2023
Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
Regulated intramembrane proteolysis (RIP) describes the protease-dependent cleavage of transmembrane proteins within the hydrophobic core of cellular membranes. Intramembrane-cleaving proteases (I-CliPs) that catalyze these reactions are found in all kingdoms of life and are involved in a wide range of cellular processes, including signaling and protein homeostasis. I-CLiPs are multispanning membrane proteins and represent challenging targets in structural and enzyme biology.
View Article and Find Full Text PDFJ Biol Chem
August 2021
Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan. Electronic address:
Escherichia coli RseP, a member of the site-2 protease family of intramembrane proteases, is involved in the activation of the σ extracytoplasmic stress response and elimination of signal peptides from the cytoplasmic membrane. However, whether RseP has additional cellular functions is unclear. In this study, we used mass spectrometry-based quantitative proteomic analysis to search for new substrates that might reveal unknown physiological roles for RseP.
View Article and Find Full Text PDFPLoS Genet
November 2018
Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA United States of America.
During the morphological process of sporulation in Bacillus subtilis two adjacent daughter cells (called the mother cell and forespore) follow different programs of gene expression that are linked to each other by signal transduction pathways. At a late stage in development, a signaling pathway emanating from the forespore triggers the proteolytic activation of the mother cell transcription factor σK. Cleavage of pro-σK to its mature and active form is catalyzed by the intramembrane cleaving metalloprotease SpoIVFB (B), a Site-2 Protease (S2P) family member.
View Article and Find Full Text PDFMethods Enzymol
August 2017
Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States. Electronic address:
Proteolysis within the membrane is catalyzed by a diverse family of proteases immersed within the hydrophobic environment of cellular membranes. These ubiquitous intramembrane-cleaving proteases (I-CLiPs) hydrolyze the transmembrane domains of a large variety of membrane-embedded proteins to facilitate signaling events essential to normal biological functions found in all forms of life. The importance of this unique class of enzyme is highlighted by its central involvement in a variety of human pathologies, including Alzheimer's disease (AD), Parkinson's disease, cancer, and the virulence of a number of viral, bacterial, and fungal pathogens.
View Article and Find Full Text PDFJ Bacteriol
November 2012
Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.
Regulated intramembrane proteolysis (RIP) involves cleavage of a transmembrane segment of a protein, releasing the active form of a membrane-anchored transcription factor (MTF) or a membrane-tethered signaling protein in response to an extracellular or intracellular signal. RIP is conserved from bacteria to humans and governs many important signaling pathways in both prokaryotes and eukaryotes. Proteases that carry out these cleavages are named intramembrane cleaving proteases (I-CLips).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!