Deep learning pose estimation for multi-cattle lameness detection.

Sci Rep

School of Natural and Environmental Science, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.

Published: March 2023

The objective of this study was to develop a fully automated multiple-cow real-time lameness detection system using a deep learning approach for cattle detection and pose estimation that could be deployed across dairy farms. Utilising computer vision and deep learning, the system can analyse simultaneously both the posture and gait of each cow within a camera field of view to a very high degree of accuracy (94-100%). Twenty-five video sequences containing 250 cows in varying degrees of lameness were recorded and independently scored by three accredited Agriculture and Horticulture Development Board (AHDB) mobility scorers using the AHDB dairy mobility scoring system to provide ground truth lameness data. These observers showed significant inter-observer reliability. Video sequences were broken down into their constituent frames and with a further 500 images downloaded from google, annotated with 15 anatomical points for each animal. A modified Mask-RCNN estimated the pose of each cow to output 5 key-points to determine back arching and 2 key-points to determine head position. Using the SORT (simple, online, and real-time tracking) algorithm, cows were tracked as they move through frames of the video sequence (i.e., in moving animals). All the features were combined using the CatBoost gradient boosting algorithm with accuracy being determined using threefold cross-validation including recursive feature elimination. Precision was assessed using Cohen's kappa coefficient and assessments of precision and recall. This methodology was applied to cows with varying degrees of lameness (according to accredited scoring, n = 3) and demonstrated that some characteristics directly associated with lameness could be monitored simultaneously. By combining the algorithm results over time, more robust evaluation of individual cow lameness was obtained. The model showed high performance for predicting and matching the ground truth lameness data with the outputs of the algorithm. Overall, threefold lameness detection accuracy of 100% and a lameness severity classification accuracy of 94% respectively was achieved with a high degree of precision (Cohen's kappa = 0.8782, precision = 0.8650 and recall = 0.9209).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024686PMC
http://dx.doi.org/10.1038/s41598-023-31297-1DOI Listing

Publication Analysis

Top Keywords

deep learning
12
lameness detection
12
lameness
10
pose estimation
8
high degree
8
video sequences
8
cows varying
8
varying degrees
8
degrees lameness
8
ground truth
8

Similar Publications

MultiChem: predicting chemical properties using multi-view graph attention network.

BioData Min

January 2025

Department of Computer Science, Hanyang University, Seoul, Republic of Korea.

Background: Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures.

View Article and Find Full Text PDF

Signatures of H3K4me3 modification predict cancer immunotherapy response and identify a new immune checkpoint-SLAMF9.

Respir Res

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.

View Article and Find Full Text PDF

Purpose: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.

Methods: Patients who underwent multiple drilling were enrolled.

View Article and Find Full Text PDF

Background: Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling.

View Article and Find Full Text PDF

Purpose: The process of searching for and selecting clinical evidence for systematic reviews (SRs) or clinical guidelines is essential for researchers in Traditional Chinese medicine (TCM). However, this process is often time-consuming and resource-intensive. In this study, we introduce a novel precision-preferred comprehensive information extraction and selection procedure to enhance both the efficiency and accuracy of evidence selection for TCM practitioners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!