Development and applications of mRNA treatment based on lipid nanoparticles.

Biotechnol Adv

Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China. Electronic address:

Published: May 2023

Nucleic acid-based therapies such as messenger RNA have the potential to revolutionize modern medicine and enhance the performance of existing pharmaceuticals. The key challenges of mRNA-based therapies are delivering the mRNA safely and effectively to the target tissues and cells and controlling its release from the delivery vehicle. Lipid nanoparticles (LNPs) have been widely studied as drug carriers and are considered to be state-of-the-art technology for nucleic acid delivery. In this review, we begin by presenting the advantages and mechanisms of action of mRNA therapeutics. Then we discuss the design of LNP platforms based on ionizable lipids and the applications of mRNA-LNP vaccines for prevention of infectious diseases and for treatment of cancer and various genetic diseases. Finally, we describe the challenges and future prospects of mRNA-LNP therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2023.108130DOI Listing

Publication Analysis

Top Keywords

lipid nanoparticles
8
development applications
4
applications mrna
4
mrna treatment
4
treatment based
4
based lipid
4
nanoparticles nucleic
4
nucleic acid-based
4
acid-based therapies
4
therapies messenger
4

Similar Publications

Current progress in CRISPR-Cas systems for rare diseases.

Prog Mol Biol Transl Sci

January 2025

Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India. Electronic address:

The groundbreaking CRISPR-Cas gene editing method permits exact genetic code alteration. The "CRISPR" DNA protects bacteria from viruses. CRISPR-Cas utilizes a guide RNA to steer the Cas enzyme to the genome's gene editing target.

View Article and Find Full Text PDF

Ether bond-modified lipid nanoparticles for enhancing the treatment effect of hepatic fibrosis.

Int J Pharm

January 2025

National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China. Electronic address:

Lipid nanoparticle (LNP)-mediated RNA delivery holds significant potential for the treatment of various liver diseases. Ionizable lipids play a crucial role in the formulation of LNPs and directly influence their delivery efficiency. In this study, we introduced an innovative concept by incorporating an ether bond into the hydrophobic tail of ionizable lipids for the first time.

View Article and Find Full Text PDF

Barcoded Hybrids of Extracellular Vesicles and Lipid Nanoparticles for Multiplexed Analysis of Tissue Distribution.

Adv Sci (Weinh)

January 2025

Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.

Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) for nucleic acid delivery often use novel lipids as functional excipients to modulate the biodistribution, pharmacokinetics, pharmacodynamics and efficacy of the nucleic acid. Novel excipients used in pharmaceutical products are subject to heightened regulatory scrutiny and often require data packages comparable to an active pharmaceutical ingredient. Although these regulatory requirements may help to ensure patient safety they also create economic and procedural barriers that can disincentivize innovation and delay clinical investigation.

View Article and Find Full Text PDF

While the branched DNA (bDNA) assay is an established bioanalytical method for measurement of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) pharmacokinetic parameters, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been considered as an alternative platform. RT-qPCR and bDNA platforms were compared for sensitivity, specificity, correlation, and overall assay performance using serum and tissue samples from 2 nonclinical mouse studies of a therapeutic mRNA candidate, LNP-PAH-mRNA, which encodes for human phenylalanine hydroxylase enzyme. Pharmacokinetic parameter noncompartmental analysis was completed using Phoenix WinNonlin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!