Molecular mechanism of tRNA binding by the Escherichia coli N7 guanosine methyltransferase TrmB.

J Biol Chem

Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada. Electronic address:

Published: May 2023

Among the large and diverse collection of tRNA modifications, 7-methylguanosine (mG) is frequently found in the tRNA variable loop at position 46. This modification is introduced by the TrmB enzyme, which is conserved in bacteria and eukaryotes. However, the molecular determinants and the mechanism for tRNA recognition by TrmB are not well understood. Complementing the report of various phenotypes for different organisms lacking TrmB homologs, we report here hydrogen peroxide sensitivity for the Escherichia coli ΔtrmB knockout strain. To gain insight into the molecular mechanism of tRNA binding by E. coli TrmB in real time, we developed a new assay based on introducing a 4-thiouridine modification at position 8 of in vitro transcribed tRNA enabling us to fluorescently label this unmodified tRNA. Using rapid kinetic stopped-flow measurements with this fluorescent tRNA, we examined the interaction of WT and single substitution variants of TrmB with tRNA. Our results reveal the role of S-adenosylmethionine for rapid and stable tRNA binding, the rate-limiting nature of mG46 catalysis for tRNA release, and the importance of residues R26, T127, and R155 across the entire surface of TrmB for tRNA binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130221PMC
http://dx.doi.org/10.1016/j.jbc.2023.104612DOI Listing

Publication Analysis

Top Keywords

trna binding
16
trna
12
mechanism trna
12
molecular mechanism
8
escherichia coli
8
trmb trna
8
trmb
7
binding
4
binding escherichia
4
coli guanosine
4

Similar Publications

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF

Cooperative and Independent Functionality of tmRNA and SmpB in : A Multifunctional Exploration Beyond Ribosome Rescue.

Int J Mol Sci

January 2025

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.

The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.

View Article and Find Full Text PDF

The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general.

View Article and Find Full Text PDF

Dichlormid protect wheat from fomesafen residual injury by increasing PPO expression and the photosynthesis characterize.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China. Electronic address:

Fomesafen is a herbicide with long persistence in soil, causing damage to succeeding crops. Dichlormid is a widely used safener protecting maize from chloroacetanilide and thiocarbamate injury. We found that dichlormid treatment could restore the growth of wheat seedlings exposed to fomesafen stress.

View Article and Find Full Text PDF

With the advancement of genetic code expansion, the field is progressing towards incorporating multiple non-canonical amino acids (ncAAs). The specificity of aminoacyl-tRNA synthetases (aaRSs) towards ncAAs is a critical factor, as engineered aaRSs frequently show polyspecificity, complicating the precise incorporation of multiple ncAAs. To address this challenge, predicting binding affinity can be beneficial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!