Is the petrochemical industry an overlooked critical source of environmental microplastics?

J Hazard Mater

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Published: June 2023

Microplastics (MPs) are ubiquitous in the environment and have been verified to be harmful to organisms. The petrochemical industry is a possible contributor, for it is the primary plastic producer but is not focused on. In this background, MPs in the influent, effluent, activated sludge, and expatriate sludge of a typical petrochemical wastewater treatment plant (PWWTP) were identified by the laser infrared imaging spectrometer (LDIR). It revealed that the abundances of MPs in the influent and effluent were as high as 10310 and 1280 items/L with a removal efficiency of 87.6%. The removed MPs accumulated in the sludge, and the MP abundances in activated and expatriate sludge reached 4328 and 10767 items/g, respectively. It is estimated that 1440,000 billion MPs might be released into the environment by the petrochemical industry in 2021 globally. For the specific PWWTP, 25 types of MPs were identified, among which Polypropylene (PP), Polyethylene (PE), and Silicone resin were dominant. All of the detected MPs were smaller than 350 µm, and those smaller than 100 µm prevailed. As for the shape, the fragment was dominant. The study confirmed the critical status of the petrochemical industry in releasing MPs for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131199DOI Listing

Publication Analysis

Top Keywords

petrochemical industry
16
mps
8
mps influent
8
influent effluent
8
expatriate sludge
8
petrochemical
5
industry overlooked
4
overlooked critical
4
critical source
4
source environmental
4

Similar Publications

Proximity to petrochemical industry and risk of childhood asthma occurrence.

Int J Hyg Environ Health

January 2025

National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Environmental and Occupational Medicine, College of Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan. Electronic address:

Adverse effects on the respiratory system were associated with intensive petroleum-related industrial activities. The study aimed to assess the impact of petrochemical exposure on childhood asthma using various surrogate indices. A singleton birth cohort from 2004 to 2017 was conducted, leveraging two linked nationwide databases in Taiwan.

View Article and Find Full Text PDF

Low-temperature direct ammonia fuel cell (DAFC) stands out as a more secure technology than the hydrogen fuel cell system, while there is still a lack of elegant bottom-up synthesis procedures for efficient ammonia oxidation reaction (AOR) electrocatalysts. The widely accepted d-band center, even with consideration of the d-band width, usually fails to describe variations in AOR reactivity in many practical conditions, and a more accurate activity descriptor is necessary for a less empirical synthesis path. Herein, the upper d-band edge, ε, derived from the d-band model, is identified as an effective descriptor for accurately establishing the descriptor-activity relationship.

View Article and Find Full Text PDF

The private sector greatly influences China's economy, which is crucial for fostering consistent economic growth. This paper takes A-share listed private enterprises (PEs) from 2009 to 2022 as the research object, uses the time-series regime-switching detection method to detect the changepoints of reverse mixed-ownership reform (RMOR) of PEs, and utilizes the staggered difference-in-difference (DID) model to investigate the impact effect and mechanism of the RMOR policy on the green transformation (GT) of PEs. The results show that the RMOR significantly promotes the GT of PEs.

View Article and Find Full Text PDF

Using metal oxides to disperse iridium (Ir) in the anode layer proves effective for lowering Ir loading in proton exchange membrane water electrolyzers (PEMWE). However, the reported low-Ir-based catalysts still suffer from unsatisfying electrolytic efficiency and durability under practical industrial working conditions, mainly due to insufficient catalytic activity and mass transport in the catalyst layer. Herein we report a class of porous heterogeneous nanosheet catalyst with abundant Ir-O-Mn bonds, achieving a notable mass activity of 4 A mg for oxygen evolution reaction at an overpotential of 300 mV, which is 150.

View Article and Find Full Text PDF

Adopting low-carbon technology has become a critical method for enterprises to reduce carbon emissions and combat global warming. However, the willingness of high-energy-consuming and high-emission enterprises, such as those in the chemical industry, to adopt this technology is not high. Therefore, how to effectively stimulate these enterprises to develop and apply low-carbon technology has become an urgent challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!