Hypothesis: The applicability of the dynamic light scattering method for the determination of particle diffusivity under confinement without applying refractive index matching was not adequately explored so far. The confinement effect on particle diffusion in a porous material which is relevant for particle chromatography has also not yet been fully characterized.
Experiments: Dynamic light scattering experiments were performed for unimodal dispersions of 11-mercaptoundecanoic acid-capped gold nanoparticles. Diffusion coefficients of gold nanoparticles in porous silica monoliths were determined without limiting refractive index matching fluids. Comparative experiments were also performed with the same nanoparticles and porous silica monolith but applying refractive index matching.
Findings: Two distinct diffusivities could be determined inside the porous silica monolith, both smaller than that in free media, showing a slowing-down of the diffusion processes of nanoparticles under confinement. While the larger diffusivity can be related to the slightly slowed-down diffusion of particles in the bulk of the pores and in the necks connecting individual pores, the smaller diffusivity might be related to the diffusion of particles near the pore walls. It shows that the dynamic light scattering method with a heterodyne detection scheme can be used as a reliable and competitive tool for determining particle diffusion under confinement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.03.045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!