A multiphase CFD-DEM model was built to simulate the waste-to-energy gasifying and direct melting furnace in a pilot demonstration facility. The characterizations of feedstocks, waste pyrolysis kinetics, and charcoal combustion kinetics were first obtained in the laboratory and used as model inputs. The density and heat capacity of waste and charcoal particles were then modelled dynamically under different status, composition, and temperature. A simplified ash melting model was developed to track the final fate of waste particles. The simulation results were in good agreement with the site observations in both temperature and slag/fly-ash generations, verifying the CFD-DEM model settings and gas-particle dynamics. More importantly, the 3-D simulations quantified and visualized the individual functioning zones in the direct-melting gasifier as well as the dynamic changes throughout the whole lifetime of waste particles, which is otherwise technically unachievable for direct plant observations. Hence, the study demonstrates that the established CFD-DEM model together with the developed simulation procedures can be used as a tool for the optimisation of operating conditions and scaled-up design for future prototype waste-to-energy gasifying and direct melting furnace.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2023.03.008 | DOI Listing |
Heliyon
January 2025
Institute of Sustainable Energy Resources, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
Understanding the behavior of sand screens is crucial for optimizing sand control strategies and preventing wellbore failure, which can significantly impact reservoir management and production efficiency. This paper presents a comprehensive experimental and numerical modeling study on sand screen performance, aimed at providing insights prior to real-field applications. The study evaluated a 200-μm wire-wrapped screen (WWS) using slurry tests to determine the amount of sand retained, sand produced and retained permeability to assess screen efficiency.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia. Electronic address:
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.
Membrane separation technology has emerged as a highly energy-efficient method for microalgae enrichment and harvesting in wastewater treatment. However, membrane fouling caused by algal cells and stratified extracellular polymeric substances (EPS) remains a critical barrier to its industrial-scale application. This study meticulously investigates the micro process of algae-derived pollutants stacking to the membrane surface affected by stratified EPS.
View Article and Find Full Text PDFSci Rep
November 2024
China Railway Engineering Equipment Group Co, Ltd., Zhengzhou, 450016, China.
Slurry pipeline transportation is widely used in dredging and serves as an essential method for conveying solid materials. However, accurately describing the interaction between slurry and particles through numerical simulations, while optimizing the pipeline structure to improve the performance of slurry pipelines, poses a significant engineering challenge. In this study, a Z-shaped continuous pipeline, designed using B-spline curves, is implemented in the slurry circulation system.
View Article and Find Full Text PDFEnergy Fuels
October 2024
Institute for Energy Systems and Technology, Department of Mechanical Engineering, Technical University Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany.
Chemical looping gasification (CLG) is a novel dual fluidized bed gasification process that enables the conversion of solid feedstocks to a nitrogen-free syngas through in situ air separation, avoiding a costly air separation unit. While there have been recent advances in experimental studies, modeling of CLG is almost exclusively restricted to lab-scale units or 1D models. In this study, a 3D CFD-DEM model of a 1 MW fuel reactor for the conversion of solid biomass was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!