UPLC-QTOF-MS-based metabolomics and chemometrics studies of geographically diverse Acer truncatum leaves: A traditional herbal tea in Northern China.

Food Chem

College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission of China, Beijing 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China. Electronic address:

Published: August 2023

Traditionally in Northern China, Acer truncatum leaves (ATL) have been used as herbal tea, now consumed worldwide. Few studies have reported ATL metabolites from different areas and their correlation with the environment. Thus, metabolomic analyses were conducted on ATL collected from twelve locations throughout four environmental zones in Northern China to understand the phytochemical differences with regards to environmental conditions. Sixty-four compounds, mostly flavonoids (FLAs) and gallic acid-containing natural products (GANPs), were characterized, including 34 previously unreported constituents from A. truncatum. Twenty-two markers were useful to differentiate ATL from the four environmental zones. Humidity, temperature, and sunshine duration are the predominant factors affecting FLAs and GANPs levels. Sunshine duration was positively correlated with eriodictyol (r = 0.994, p < 0.01), and humidity negatively with epicatechin gallate (r = -0.960, p < 0.05). These findings provide insights into ATL phytochemistry, aiding cultivation of A. truncatum tea with higher potential health benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.135873DOI Listing

Publication Analysis

Top Keywords

northern china
12
acer truncatum
8
truncatum leaves
8
herbal tea
8
environmental zones
8
sunshine duration
8
uplc-qtof-ms-based metabolomics
4
metabolomics chemometrics
4
chemometrics studies
4
studies geographically
4

Similar Publications

Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane(PU)-based conductive fabric(GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy.

View Article and Find Full Text PDF

Genetic Mechanism Analysis Related to Cold Tolerance of Red Swamp Crayfish, Procambarus clarkii.

Mar Biotechnol (NY)

January 2025

Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China.

In China, the red swamp crayfish (Procambarus clarkii), a notorious invasive species, has become an important economic freshwater species. In order to compare the genetic diversity and population structure of crayfish from northern and southern China, we collected 60 crayfish individuals from 4 crayfish populations in northern China and 2 populations in southern China for sequencing using the 2b-RAD technique. Additionally, the whole genome sequence information obtained by 2b-RAD of 90 individuals from 2 populations in northern China and 7 populations in southern China were downloaded from NCBI.

View Article and Find Full Text PDF

Field-scale screening of pumpkin cultivars for cost-effectiveness of "repairing while producing" in cadmium-arsenic co-contaminated agricultural land.

Food Chem X

January 2025

Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.

Soil contamination with heavy metals poses a significant health risk as these metals can be transferred to humans through agricultural products. This study aimed to identify pumpkin varieties with low cadmium and arsenic accumulation. To this end, we evaluated 25 pumpkin varieties.

View Article and Find Full Text PDF

A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe-N-C Oxygen Reduction Catalysts.

Angew Chem Int Ed Engl

January 2025

Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.

Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.

View Article and Find Full Text PDF

To assess the efficacy and safety of "one-stop" procedures combining radiofrequency catheter ablation and left atrial appendage closure by guidance of intracardiac echocardiography(ICE) in elderly patients with atrial fibrillation. A retrospective cohort study was conducted on patients who underwent ICE-guided "one-stop" procedures at the Department of Cardiology, General Hospital of Northern Theater Command between December 2020 and January 2023. Patients were divided into elderly group (age≥60 years old) and non-elderly group (age 18-59 years old).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!