A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Weakly supervised histopathology image segmentation with self-attention. | LitMetric

Weakly supervised histopathology image segmentation with self-attention.

Med Image Anal

School of Biological Science and Medical Engineering, State Key Laboratory of Software Development Environment, Key Laboratory of Biomechanics, Mechanobiology of Ministry of Education and Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China; Microsoft Research, Beijing 100080, China. Electronic address:

Published: May 2023

Accurate segmentation in histopathology images at pixel-level plays a critical role in the digital pathology workflow. The development of weakly supervised methods for histopathology image segmentation liberates pathologists from time-consuming and labor-intensive works, opening up possibilities of further automated quantitative analysis of whole-slide histopathology images. As an effective subgroup of weakly supervised methods, multiple instance learning (MIL) has achieved great success in histopathology images. In this paper, we specially treat pixels as instances so that the histopathology image segmentation task is transformed into an instance prediction task in MIL. However, the lack of relations between instances in MIL limits the further improvement of segmentation performance. Therefore, we propose a novel weakly supervised method called SA-MIL for pixel-level segmentation in histopathology images. SA-MIL introduces a self-attention mechanism into the MIL framework, which captures global correlation among all instances. In addition, we use deep supervision to make the best use of information from limited annotations in the weakly supervised method. Our approach makes up for the shortcoming that instances are independent of each other in MIL by aggregating global contextual information. We demonstrate state-of-the-art results compared to other weakly supervised methods on two histopathology image datasets. It is evident that our approach has generalization ability for the high performance on both tissue and cell histopathology datasets. There is potential in our approach for various applications in medical images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2023.102791DOI Listing

Publication Analysis

Top Keywords

weakly supervised
24
histopathology image
16
histopathology images
16
image segmentation
12
supervised methods
12
histopathology
9
segmentation histopathology
8
methods histopathology
8
supervised method
8
weakly
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!