AAV9-HGF cooperating with TGF-beta/Smad inhibitor attenuates silicosis fibrosis via inhibiting ferroptosis.

Biomed Pharmacother

School of Public Health and Management, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan 75000, Ningxia, China; NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 75000, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China. Electronic address:

Published: May 2023

Silicosis is a devastating interstitial lung disease characterized by silicon nodules and diffuse pulmonary fibrosis. To date, inefficient therapy is still a challenge of this disease due to its complicated pathogenesis. Hepatocyte growth factor (HGF) which is highly expressed in hepatocyte with anti-fibrotic and anti-apoptotic function was downregulated in silicosis. In addition, the upregulation of transforming growth factor-beta (TGF-β), another pathological molecular was observed to aggravate the severity and accelerate the progression of silicosis. Here AAV expressed HGF with targeting pulmonary capillaries and SB431542, the inhibitor of TGF-β signal pathway, were simultaneously adopted to synergistically reduce silicosis fibrosis. In vivo result demonstrated that the cooperation of HGF with SB431542 showed strong anti-fibrosis effects on the silicosis mice via tracheal administration of silica, compared to the separate treatment. The high efficacy was mainly achieved by remarkably by reducing ferroptosis of lung tissue. In our point, the combination of AAV9-HGF with SB431542 provide an alternative to relieve silicosis fibrosis from the perspective of targeting pulmonary capillaries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.114537DOI Listing

Publication Analysis

Top Keywords

silicosis fibrosis
12
targeting pulmonary
8
pulmonary capillaries
8
silicosis
7
aav9-hgf cooperating
4
cooperating tgf-beta/smad
4
tgf-beta/smad inhibitor
4
inhibitor attenuates
4
attenuates silicosis
4
fibrosis
4

Similar Publications

Tripartite motif-containing 32 regulated by miR-6236-p5 inhibited silica-induced apoptosis of alveolar macrophages.

Toxicology

December 2024

Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu, 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China. Electronic address:

Apoptosis of alveolar macrophages (AMs) induced by silica is one of the crucial driving factors of silicosis inflammation and fibrosis. However, the mechanism of silica-induced AMs apoptosis remains unclear. In this study, transcriptome sequencing identified 11 differentially expressed (DE)-mRNAs enriched in the regulation of apoptotic signaling pathways in AMs treated with 250 μg/mL silica for 24 h, of which tripartite motif-containing 32 (Trim32) was the most significant and down-regulated.

View Article and Find Full Text PDF

Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.

View Article and Find Full Text PDF

Pulmonary and systemic effects of inhaled crystalline silica in the HOCl-induced mouse model of systemic sclerosis: An experimental model of Erasmus syndrome.

Clin Immunol

December 2024

Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France. Electronic address:

Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model.

View Article and Find Full Text PDF

PD-L1 upregulation in activated fibroblasts promotes silica particle-induced pulmonary fibrosis.

Int J Biol Macromol

December 2024

Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China. Electronic address:

Silicosis is a severe interstitial lung disease resulting from prolonged exposure to silica dust in working environment, characterized by inflammation and fibrosis. This condition is closely associated with immune dysregulation, although the precise regulatory mechanisms remain elusive. Immune checkpoints (ICs) comprise receptor-ligand pairs crucial for immune cell activation and coordination of immune responses.

View Article and Find Full Text PDF

Fatty Acid Oxidation-Glycolysis Metabolic Transition Affects ECM Homeostasis in Silica-Induced Pulmonary Fibrosis.

Adv Sci (Weinh)

December 2024

Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.

Silicosis is a fatal occupational pulmonary disease that is characterized by irreversible replacement of lung parenchyma by aberrant Exracellular matrix (ECM). Metabolic reprogramming is a crucial mechanism for fibrosis. However, how the metabolic rewiring shifts the ECM homeostasis toward overaccumulation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!