Oxygen deprivation (hypoxia) in the root due to waterlogging causes profound metabolic changes in the aerial organs depressing growth and limiting plant productivity in barley (Hordeum vulgare L.). Genome-wide analyses in waterlogged wild type (WT) barley (cv. Golden Promise) plants and plants over-expressing the phytoglobin 1 HvPgb1 [HvPgb1(OE)] were performed to determine leaf specific transcriptional responses during waterlogging. Normoxic WT plants outperformed their HvPgb1(OE) counterparts for dry weight biomass, chlorophyll content, photosynthetic rate, stomatal conductance, and transpiration. Root waterlogging severely depressed all these parameters in WT plants but not in HvPgb1(OE) plants, which exhibited an increase in photosynthetic rate. In leaftissue, root waterlogging repressed genes encoding photosynthetic components and chlorophyll biosynthetic enzymes, while induced those of reactive oxygen species (ROS)-generating enzymes. This repression was alleviated in HvPgb1(OE) leaves which also exhibited an induction of enzymes participating in antioxidant responses. In the same leaves, the transcript levels of several genes participating in nitrogen metabolism were also higher relative to WT leaves. Ethylene levels were diminished by root waterlogging in leaves of WT plants, but not in HvPgb1(OE), which were enriched in transcripts of ethylene biosynthetic enzymes and ethylene response factors. Pharmacological treatments increasing the level or action of ethylene further suggested the requirement of ethylene in plant response to root waterlogging. In natural germplasm an elevation in foliar HvPgb1 between 16h and 24h of waterlogging occurred in tolerant genotypes but not in susceptible ones. By integrating morpho-physiological parameters with transcriptome data, this study provides a framework defining leaf responses to root waterlogging and indicates that the induction of HvPgb1 may be used as a selection tool to enhance resilience to excess moisture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2023.153944DOI Listing

Publication Analysis

Top Keywords

root waterlogging
28
waterlogging
9
phytoglobin hvpgb1
8
transcriptional responses
8
responses root
8
photosynthetic rate
8
plants hvpgb1oe
8
biosynthetic enzymes
8
root
7
plants
6

Similar Publications

A unique case report on campylobacter rectus infection leading to acute motor axonal neuropathy in a pediatric patient. Campylobacter rectus is an anaerobic bacterium found in the oral cavity. While it has been linked to periodontal disease, its association with acute motor axonal neuropathy (AMAN), a variant of Guillain-Barre Syndrome, remains unverified.

View Article and Find Full Text PDF

Comparative Transcriptome Analyses Reveal the Mechanisms Underlying Waterlogging Tolerance in Barley.

Plants (Basel)

December 2024

Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safetyof Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.

Waterlogging is becoming a global issue, affecting crop growth and yield in low-lying rainfed areas. A DH line, TamF169, showing superior waterlogging tolerance, and its waterlogging-sensitive parent, Franklin, were used to conduct transcriptome analyses. The results showed that 2209 and 2578 differentially expressed genes (DEGs) in Franklin and 1997 and 1709 DEGs in TamF169 were detected by comparing gene expression levels under control and waterlogging after 4 and 8 days, respectively, with 392 and 257 DEGs being specific to TamF169 after 4 and 8 days under waterlogging, respectively.

View Article and Find Full Text PDF

Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells.

Cell Mol Biol Lett

January 2025

Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.

Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.

View Article and Find Full Text PDF

In light of the increasingly adverse environmental conditions and the concomitant challenges to the survival of important crops, there is a pressing need to enhance the resilience of pepper seedlings to extreme weather. Carotenoid plays an important role in plants' resistance to abiotic stress. Nevertheless, the relationship between carotenoid biosynthesis and sweet pepper seedlings' resistance to different abiotic stresses remains uncertain.

View Article and Find Full Text PDF

Field pennycress () is a new biofuel winter annual crop with extreme cold hardiness and a short life cycle, enabling off-season integration into corn and soybean rotations across the U.S. Midwest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!