Tandem duplication, one of the major types of duplication, provides the raw material for the evolution of divergent functions. In this study, we identified 1 pair of tandem duplicate genes (AT5G12950 and AT5G12960) in Arabidopsis (Arabidopsis thaliana) that originated within the last 16 million years after the split of Arabidopsis from the Capsella-Boechera ancestor. We systematically used bioinformatic tools to redefine their putative biochemical function as β-L-arabinofuranosidases that release L-Arabinose from the β-L-Araf-containing molecules in Arabidopsis. Comprehensive transcriptomic and proteomic analyses using various datasets showed divergent expression patterns among tissues between the 2 duplicate genes. We further collected phenotypic data from 2 types of measurements to indicate that AT5G12950 and AT5G12960 have different roles resulting in divergent phenotypic effects. Overall, AT5G12950 and AT5G12960 represent putative β-L-arabinofuranosidase encoding genes in Arabidopsis. After duplication, 1 duplicate copy developed diverged biological functions and contributed to a different phenotypic evolution in Arabidopsis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiad169DOI Listing

Publication Analysis

Top Keywords

duplicate genes
12
at5g12950 at5g12960
12
tandem duplicate
8
arabidopsis
7
neofunctionalization tandem
4
duplicate
4
genes
4
genes encoding
4
encoding putative
4
putative β-l-arabinofuranosidases
4

Similar Publications

Re-Examination Characterization and Screening of Stripe Rust Resistance Gene of Wheat Gene Family Based on the Transcriptome in Xinchun 32.

Int J Mol Sci

January 2025

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.

Pathogenesis-related protein-1 (PR1) encodes a water-soluble protein produced in plants after pathogen infection or abiotic stimulation. It plays a crucial role in plant-induced resistance by attacking pathogens, degrading cell wall macromolecules and pathogen toxins, and inhibiting the binding of viral coat proteins to plant receptor molecules. Compared to model plants, the mechanism of action of PR1 in wheat remains underexplored.

View Article and Find Full Text PDF

As the mobile cassette carrier of the methicillin resistance gene that is transported across staphylococci species, the evolution and origin of Staphylococcal Cassette Chromosome (SCC)-and in particular, the composition of and SCC-have been extensively discussed in the scientific literature; however, information regarding its dissemination across geographical limits and evolution over decades remains limited. In addition, whole-genome sequencing-based macro-analysis was unable to provide sufficiently detailed evolutionary information on SCC. Herein, the cassette chromosome recombinase genes , as essential components of SCC, were employed to explore the evolution of SCC.

View Article and Find Full Text PDF

The stone loach Barbatula barbatula is a benthic fish species widely distributed throughout Europe, primarily inhabiting stony upper sections of stream networks. This study presents an updated genome assembly of B. barbatula, contributing to the species' available genomic resources for downstream applications such as conservation genetics.

View Article and Find Full Text PDF

Transcription factors induce differential splicing of duplicated ribosomal protein genes during meiosis.

Nucleic Acids Res

January 2025

Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.

In baker's yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one 'major' paralog highly expressed and a 'minor' less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14.

View Article and Find Full Text PDF

Background/objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!