A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of field amplitude and dipolar interactions on the dynamic response of immobilized magnetic nanoparticles: Perpendicular mutual alignment of an alternating magnetic field and the easy axes. | LitMetric

Influence of field amplitude and dipolar interactions on the dynamic response of immobilized magnetic nanoparticles: Perpendicular mutual alignment of an alternating magnetic field and the easy axes.

Phys Rev E

Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia.

Published: February 2023

In this paper, the dynamic magnetic properties of an ensemble of interacting immobilized magnetic nanoparticles with aligned easy axes in an applied ac magnetic field directed perpendicular to the easy axes are considered. The system models soft, magnetically sensitive composites synthesized from liquid dispersions of the magnetic nanoparticles in a strong static magnetic field, followed by the carrier liquid's polymerization. After polymerization, the nanoparticles lose translational degrees of freedom; they react to an ac magnetic field via Néel rotation, when the particle's magnetic moment deviates from the easy axis inside the particle body. Based on a numerical solution of the Fokker-Planck equation for the probability density of the magnetic moment orientation, the dynamic magnetization, frequency-dependent susceptibility, and relaxation times of the particle's magnetic moments are determined. It is shown that the system's magnetic response is formed under the influence of competing interactions, such as dipole-dipole, field-dipole, and dipole-easy-axis interactions. The contribution of each interaction to the magnetic nanoparticle's dynamic response is analyzed. The obtained results provide a theoretical basis for predicting the properties of soft, magnetically sensitive composites, which are increasingly used in high-tech industrial and biomedical technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.024601DOI Listing

Publication Analysis

Top Keywords

magnetic field
16
magnetic
13
magnetic nanoparticles
12
easy axes
12
dynamic response
8
immobilized magnetic
8
soft magnetically
8
magnetically sensitive
8
sensitive composites
8
particle's magnetic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!