A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diffuse interface model for a single-component liquid-vapor system. | LitMetric

Diffuse interface model for a single-component liquid-vapor system.

Phys Rev E

Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Published: February 2023

We elucidate the theoretical relationships among fundamental physical concepts that are involved in the diffuse interface modeling for an isothermal single-component liquid-vapor system, which cover both the equation of state (EOS) and the surface tension force. As an example, a flat surface at equilibrium is discussed both theoretically and numerically by using two different approaches. Particularly, the force structure in the transition region is clearly presented, which demonstrates that the capillary contributions due to the density gradients can suppress the mechanical instability of the thermodynamic pressure and lead to constant hydrodynamic pressure (and chemical potential). Then, by comparing with the van der Waals (vdW) EOS for a flat interface at equilibrium, it is shown that applying the double-well approximation can give qualitative predictions for relatively high density ratio (ρ_{l}/ρ_{g}=7.784) and satisfactory results for relatively low density ratio (ρ_{l}/ρ_{g}=1.774). The main cause for this observation is attributed to the nonlinear variation of the generalized coefficient function in the double-well formulation at different density ratios. In addition, for the latter case, we simulate a droplet impact on a hydrophilic wall by using a recently proposed well-balanced discrete unified gas kinetic scheme (WB-DUGKS), which justifies the applicability of the double-well approximation to complex interfacial dynamics in the low-density-ratio limit. Furthermore, the reason for the inconsistency between the coefficients of the mean-field force expressions in the existing literature is explained.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.025104DOI Listing

Publication Analysis

Top Keywords

diffuse interface
8
single-component liquid-vapor
8
liquid-vapor system
8
double-well approximation
8
density ratio
8
interface model
4
model single-component
4
system elucidate
4
elucidate theoretical
4
theoretical relationships
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!