Network routing approaches are widely used to study the evolution in time of self-adapting systems. However, few advances have been made for problems where adaptation is governed by time-dependent inputs. In this work we study a dynamical systems where the edge conductivities of a network are regulated by time-varying mass loads injected on nodes. Motivated by empirical observations, we assume that conductivities adapt slowly with respect to the characteristic time of the loads. Furthermore, assuming the loads to be periodic, we derive a dynamics where the evolution of the system is controlled by a matrix obtained with the Fourier coefficients of the input loads. Remarkably, we find a sufficient condition on these coefficients that determines when the resulting network topologies are trees. We show an example of this on the Bordeaux bus network where we tune the input loads to interpolate between loopy and tree topologies. We validate our model on several synthetic networks and provide an expression for long-time solutions of the original conductivities.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.024302DOI Listing

Publication Analysis

Top Keywords

network routing
8
input loads
8
loads
6
network
5
infrastructure adaptation
4
adaptation emergence
4
emergence loops
4
loops network
4
routing time-dependent
4
time-dependent loads
4

Similar Publications

Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.

View Article and Find Full Text PDF

Generally, to address the resource management issues in high-speed railway operations, particularly in the context of large-scale networked high-speed train transportation organizations, a phased optimization approach is introduced. This approach divides the problem into two stages: the high-speed train timetabling and the planning of Electric Multiple Unit (EMU) route. The lack of direct integration between these stages has hindered the flexible and efficient utilization of line capacity and EMU resources based on large-scale network, limiting the potential for mutual compensation and coordination among different types of resources across different regions.

View Article and Find Full Text PDF

This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.

View Article and Find Full Text PDF

Predictive Forwarding Rule Caching for Latency Reduction in Dynamic SDN.

Sensors (Basel)

December 2024

Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.

In mission-critical environments such as industrial and military settings, the use of unmanned vehicles is on the rise. These scenarios typically involve a ground control system (GCS) and nodes such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). The GCS and nodes exchange different types of information, including control data that direct unmanned vehicle movements and sensor data that capture real-world environmental conditions.

View Article and Find Full Text PDF

Fault Diagnosis of Bearings with Small Sample Size Using Improved Capsule Network and Siamese Neural Network.

Sensors (Basel)

December 2024

College of Intelligent Manufacturing and Industrial Modernization, Xinjiang University, Urumqi 830017, China.

This paper addresses the challenges of low accuracy and long transfer learning time in small-sample bearing fault diagnosis, which are often caused by limited samples, high noise levels, and poor feature extraction. We propose a method that combines an improved capsule network with a Siamese neural network. Multi-view data partitioning is used to enrich data diversity, and Markov transformation converts one-dimensional vibration signals into two-dimensional images, enhancing the visualization of signal features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!