Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aging transition is an emergent behavior observed in networks consisting of active (self-oscillatory) and inactive (non-self-oscillatory) nodes, where the network transits from a global oscillatory state to an oscillation collapsed state when the fraction of inactive oscillators surpasses a critical value. However, the aging transition in quantum domain has not been studied yet. In this paper we investigate the quantum manifestation of aging transition in a network of active-inactive quantum oscillators. We show that, unlike classical case, the quantum aging is not characterized by a complete collapse of oscillation but by sufficient reduction in the mean boson number. We identify a critical "knee" value in the fraction of inactive oscillators around which quantum aging occurs in two different ways. Further, in stark contrast to the classical case, quantum aging transition depends upon the nonlinear damping parameter. We also explain the underlying processes leading to quantum aging that have no counterpart in the classical domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.107.024204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!