We consider large networks of globally coupled spiking neurons and derive an exact low-dimensional description of their collective dynamics in the thermodynamic limit. Individual neurons are described by the Ermentrout-Kopell canonical model that can be excitable or tonically spiking and interact with other neurons via pulses. Utilizing the equivalence of the quadratic integrate-and-fire and the theta-neuron formulations, we first derive the dynamical equations in terms of the Kuramoto-Daido order parameters (Fourier modes of the phase distribution) and relate them to two biophysically relevant macroscopic observables, the firing rate and the mean voltage. For neurons driven by Cauchy white noise or for Cauchy-Lorentz distributed input currents, we adapt the results by Cestnik and Pikovsky [Chaos 32, 113126 (2022)1054-150010.1063/5.0106171] and show that for arbitrary initial conditions the collective dynamics reduces to six dimensions. We also prove that in this case the dynamics asymptotically converges to a two-dimensional invariant manifold first discovered by Ott and Antonsen. For identical, noise-free neurons, the dynamics reduces to three dimensions, becoming equivalent to the Watanabe-Strogatz description. We illustrate the exact six-dimensional dynamics outside the invariant manifold by calculating nontrivial basins of different asymptotic regimes in a bistable situation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.107.024315 | DOI Listing |
Objectives: The pairing of immunotherapy and radiotherapy in the treatment of locally advanced nonsmall cell lung cancer (NSCLC) has shown promise. By combining radiotherapy with immunotherapy, the synergistic effects of these modalities not only bolster antitumor efficacy but also exacerbate lung injury. Consequently, developing a model capable of accurately predicting radiotherapy- and immunotherapy-related pneumonitis in lung cancer patients is a pressing need.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China.
Background: Diabetes and chronic obstructive pulmonary disease (COPD) are prominent global health challenges, each imposing significant burdens on affected individuals, healthcare systems, and society. However, the specific molecular mechanisms supporting their interrelationship have not been fully defined.
Methods: We identified the differentially expressed genes (DEGs) of COPD and diabetes from multi-center patient cohorts, respectively.
Front Med (Lausanne)
January 2025
Department of Law, Institute of Legal Medicine, University of Macerata, Macerata, Italy.
Introduction: Adverse events in hospitals significantly compromise patient safety and trust in healthcare systems, with medical errors being a leading cause of death globally. Despite efforts to reduce these errors, reporting remains low, and effective system changes are rare. This systematic review explores the potential of artificial intelligence (AI) in clinical risk management.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
Background: Prostate cancer (PC) is the most frequently diagnosed cancer in men and continues to be a major cause of cancer-related mortality worldwide. In recent years, non-coding RNAs (ncRNAs) have emerged as a significant focus in molecular biology research, playing a pivotal role in the development and progression of PC. This study employed bibliometric analysis to explore the global outputs, research hotspots, and future trends in ncRNA-related PC research over the past 20 years.
View Article and Find Full Text PDFBrain Commun
January 2025
Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany.
Traumatic brain injury is widely viewed as a risk factor for dementia, but the biological mechanisms underlying this association are still unclear. In previous studies, traumatic brain injury has been associated with the hallmark pathologies of Alzheimer's disease, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!