A rapid outdoor sampling technique was tested to measure human exposure to radio frequencies in a city of 96,000 inhabitants. The technique consisted of taking measurements with a personal exposure meter inside a moving vehicle. Tests were carried out to quantify the alteration produced by the vehicle's structure and obtain correction factors in order to minimize this alteration. Data were collected at 3065 points where signals in the FM radio and mobile phone wavebands were detected. The coefficients of exposure to sources with multiple frequencies due to thermal effects were calculated from the measured values of the electric field. Kriging was used to generate maps of these coefficients, and these maps were then merged with aerial photographs of the city to readily identify the areas with greater or lesser exposure. The results indicated that the vehicle increased the FM broadcasting radiation readings by a factor of 1.66, but attenuated those of mobile telephony by factors of 0.54-0.66. The mean electric field levels detected throughout the city were 0.231, 0.057, 0.140, 0.124, and 0.110 V/m for the frequency bands FM, LTE 800 (DL), GSM + UMTS 900(DL), GSM 1800(DL), and UMTS 2100(DL), respectively. The mean coefficient of exposure to sources with multiple frequencies was 2.05 × 10, and the maximum was 9.81 × 10. It can be concluded from the study that it is possible to assess radio frequency exposure using this method, and that the technique is scalable to different sized cities. It also allows measurement at different times so as to analyse the temporal variation of radio frequency levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162852 | DOI Listing |
Health Phys
January 2025
Division of Vision Research for Environmental Health, Medical Research Institute and Department of Ophthalmology, Kanazawa Medical University, Kahoku, Japan.
Electromagnetic radiation energy at millimeter wave frequencies, typically 30 GHz to 300 GHz, is ubiquitously used in society in devices for telecommunications; radar and imaging systems for vehicle collision avoidance, security screening, and medical equipment; scientific research tools for spectroscopy; industrial applications for non-destructive testing and precise measurement; and military and defense applications. Understanding the biological effects of this technology is essential. We have been investigating ocular responses and damage thresholds comparing various frequencies using rabbit eyes and dedicated experimental apparatus.
View Article and Find Full Text PDFElife
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Public Health, School of Public Health, Debre Berhan University, Debre Berhan, Ethiopia.
Background: Breast cancer poses a significant health burden in Ghana and globally, being the primary cause of cancer-related illness and death among women. The World Health Organization has identified clinical breast examination as the gold standard for women in low and middle-income countries. However, the uptake of clinical breast examination remains low in these settings, including Ghana, where the nationwide prevalence and associated factors of this practice have not been determined.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy.
Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.
View Article and Find Full Text PDFJMIR Form Res
December 2024
REACH Lab, Department of Pediatrics, Division of Adolescent Medicine, Stanford University, Palo Alto, CA, United States.
Background: Electronic cigarettes (e-cigarettes) are the most used form of tobacco products among adolescents and young adults, and Vuse is one of the most popular brands of e-cigarettes among US adolescents. In October 2021, Vuse Solo became the first e-cigarette brand to receive marketing granted orders (MGOs) from the US Food and Drug Administration (FDA), authorizing its marketing and their tobacco-flavored pods. Vuse Ciro and Vuse Vibe, and their tobacco-only ("original") e-liquids, were authorized for marketing in May 2022 and Vuse Alto tobacco-flavored devices were authorized in July 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!