Impact of industrial air pollution on the quality of atmospheric water production.

Environ Pollut

The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel. Electronic address:

Published: May 2023

The atmospheric water generator (AWG) is a commercially available device that produces water from the air in large volumes over short times. This method can be applied in most regions of the world to solve chronic and acute drinking water scarcity. However, knowledge of the effects of air chemical composition on AWG-produced water quality is still very limited. In this study, a comprehensive survey of AWG-produced water quality was conducted in a heavily polluted industrial environment; 83 AWG water samples were analyzed for 99 different quality parameters, including organic, inorganic, and microbial contamination. Two parameters-nickel (15 samples) and dichloromethane (2 samples)-exceeded sporadically their drinking water standards of EPA, EU and IL. Ammonia was the only parameter consistently above standard limits of 0.5 mg/L (61% of samples, relevant to 47 countries) and even higher than 1.5 mg/L. Comparison to real air concentrations of volatile pollutants in the same environment did not reveal any significant correlations; while some pollutants were found at high concentrations in the air, this was not reflected by their presence in the produced water. The findings show that even in areas that are considered excessively polluted relative to the natural environment, the water produced from the air by AWG could be considered suitable for drinking, with careful attention to very specific contaminants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.121447DOI Listing

Publication Analysis

Top Keywords

water
10
atmospheric water
8
drinking water
8
awg-produced water
8
water quality
8
air
6
impact industrial
4
industrial air
4
air pollution
4
quality
4

Similar Publications

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Concomitant formation of protocells and prebiotic compounds under a plausible early Earth atmosphere.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científica, Armilla 18100, Spain.

Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.

View Article and Find Full Text PDF

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.

View Article and Find Full Text PDF

Liquid-nano-liquid interface-oriented anisotropic encapsulation.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!