Background: Iron deficiency (ID) is associated with adverse prognosis in patients with heart failure. This study aims to investigate the relationship between ID and expression of genes involved in iron metabolism in human myocardium and skeletal muscle, focusing on Transferrin 1 receptor (TfR1), the main pathway of cellular iron uptake.

Methods: Patients undergoing elective CABG were assessed prior to surgery with echocardiography and serum iron parameters. Core needle biopsies were collected from the left and right ventricle (LV, RV), the right atrium and intercostal skeletal muscle (SM). Gene expression analyses were done by mRNA sequencing.

Results: Of 69 patients (median age 69 years, 91% men), 28% had ID. 26% had HFrEF, 25% had HFpEF physiology according to echocardiographic findings and NT-proBNP levels, and 49% had normal LV function. The expression of TfR1 was increased in patients with ID compared to patients without ID in ventricular tissue (p = 0.04) and in intercostal SM (p = 0.01). The increase in TfR1 expression in LV and RV was more pronounced when analysing patients with absolute ID (S-Ferritin<100 μg/L). Analysing the correlation between various iron parameters, S-Ferritin levels showed the strongest correlation with TfR1 expression. There was no correlation with NT-proBNP levels and no difference in TfR1 expression between different HF phenotypes.

Conclusions: In patients undergoing elective CABG we found an association between ID and increased TfR1 expression in myocardium regardless of LV function, indicating physiologically upregulated TfR1 expression in the presence of ID to restore intracellular iron needs.

Clinical Trial Registration: Clinicaltrials.govNCT03671122.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2023.03.032DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
iron deficiency
8
expression genes
8
genes involved
8
involved iron
8
iron metabolism
8
metabolism human
8
human myocardium
8
myocardium skeletal
8
patients
6

Similar Publications

Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 myotubes.

Arch Physiol Biochem

January 2025

Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

Background: When designing cutting-edge technology, particularly humanoid social robots, an essential consideration is understanding how individuals naturally engage in social interactions, shaping their relationships with technology and media.

Method: In pursuit of insights into the application of natural human behavior, specifically reciprocation, in human-robot interaction, an experiment involving 72 participants, involving facial electromyography, focusing on zygomatic and corrugator muscles, served as a tool to gauge users' emotional valence during interactions. The study assessed users' willingness to reciprocate a favor and measured compliance by tracking the number of raffle tickets purchased by users at the robot's request.

View Article and Find Full Text PDF

Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.

View Article and Find Full Text PDF

Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.

View Article and Find Full Text PDF

Dual oxidases (DUOX) are enzymes that have the main function in producing reactive oxygen species (ROS) in various tissues. DUOX also play an important role in the synthesis of HO, which is essential for the production of thyroid hormone. Thyroid hormones can influence the process of muscle development through direct stimulation of ROS, 5' AMP-activated protein kinase (AMPK) and mTOR and indirect effect autophagy and the insulin-like growth factor 1 (IGF-1) pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!