The SNP rs4591246 in pri-miR-1-3p is associated with abdominal aortic aneurysm risk by regulating cell phenotypic transformation via the miR-1-3p/TLR4 axis.

Int Immunopharmacol

Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China. Electronic address:

Published: May 2023

Emerging evidence reveals that single nucleotide polymorphism (SNP) within miRNAs can affect the risk of cardiovascular diseases. However, the role of miRNA SNPs in abdominal aortic aneurysm (AAA) is unclear. This study aimed to determine the association between SNPs in pri-miR-1-3p and AAA risk, as well as its underlying molecular mechanism. SNP genotyping was performed in 335 AAA patients and 335 controls using the KASP method and tissue miR-1-3p expression was measured by qRT-PCR. The biological effects of significant SNP were validated using in vitro studies. We found that the rs4591246 variant genotype was correlated with increased AAA risk and tissue miR-1-3p expression was reduced in AAA patients as compared with control subjects. An in silico approach predicted that the rs4591246 polymorphism altered the secondary structure and stability of pri-miR-1-3p, and in vitro evidence suggested that the rs4591246 polymorphism affected mature miR-1-3p expression. And luciferase assays verified TLR4 as a direct target gene of miR-1-3p. Further functional experiments demonstrated that the rs4591246 variant genotype could promote Ang II-induced cell phenotypic switching by suppressing mature miR-1-3p expression and in turn upregulating TLR4 expression, but this effect was rescued in the presence of TLR4 siRNA. In conclusion, as a promising genetic biomarker for AAA susceptibility, the SNP rs4591246 may exert its effects on AAA risk by regulating cell phenotypic transformation via the miR-1-3p/TLR4 axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110016DOI Listing

Publication Analysis

Top Keywords

mir-1-3p expression
16
cell phenotypic
12
aaa risk
12
snp rs4591246
8
abdominal aortic
8
aortic aneurysm
8
risk regulating
8
regulating cell
8
phenotypic transformation
8
transformation mir-1-3p/tlr4
8

Similar Publications

Introduction: microRNAs (miRNAs) are small noncoding RNAs and promising cancer biomarkers. Prostate-specific antigen (PSA) testing revolutionized prostate cancer (PCa) diagnostics and monitoring. However, PSA testing also contributes to PCa overdiagnoses that are detrimental on patients' health and may lead to overtreatment.

View Article and Find Full Text PDF

Background: The overall prognosis of patients with esophageal cancer (EC) is extremely poor. There is an urgent need to develop innovative therapeutic strategies. This study will investigate the anti-cancer effects of exosomes loaded with specific anti-cancer microRNAs in vivo and in vitro.

View Article and Find Full Text PDF

Pre-eclampsia (PE) is a serious condition affecting 2-8% of pregnancies worldwide, leading to high maternal and fetal morbidity and mortality. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as potential biomarkers for various pregnancy-related pathologies, including PE. MiRNAs in plasma and serum have been extensively studied, but urinary miRNAs remain underexplored, especially during early pregnancy.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) increases the susceptibility of bone fragility. The underlying mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short single-stranded non-coding RNA molecules with utility as biomarkers due to their easy accessibility and stability in bodily fluids.

View Article and Find Full Text PDF

hsa‑miR‑1‑3p and hsa‑miR‑361‑3p as potential biomarkers for onychomycosis: A pilot study.

Biomed Rep

February 2025

Department of Dermatological Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, P.R. China.

Non-coding small molecule RNAs are associated with a variety of diseases, including infectious diseases. However, small RNA-related studies in onychomycosis have not been reported. The aim of the present study was to conduct an initial investigation of small RNA in onychomycosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!