The microorganisms that co-exist between soil and rice systems in heavy metal-contaminated soil environments play important roles in the heavy metal pollution states of rice, as well as in the growth of the rice itself. In this study, in order to further examine the effects of soil microorganisms on the mercury (Hg) uptake of rice plants and determine potential soil phytoremediation agents, an enriched Hg isotope was spiked in a series of pot experiments to trace the absorption and migration of Hg and rice growth in the presence of arbuscular mycorrhizal fungi (AMF). It was observed that the AMF inoculations significantly reduced the Hg concentration in the rice. The Hg concentration in rice in the AMF inoculation group was between 52.82% and 96.42% lower than that in the AMF non-inoculation group. It was also interesting to note that the presence of AMF tended to cause Hg (especially methyl-Hg (MeHg)) to migrate and accumulate in the non-edible parts of the rice, such as the stems and leaves. Under the experimental conditions selected in this study, the proportion of MeHg in rice grains decreased from 9.91% to 27.88%. For example, when the exogenous Hg concentration was 0.1 mg/kg, the accumulated methyl-Hg content in the grains of the rice in the AMF inoculation group accounted for only 20.19% of the MeHg content in the rice plants, which was significantly lower than that observed in the AMF non-inoculated group (48.07%). AMF also inhibited the absorption of Hg by rice plants, and the decrease in the Hg concentration levels in rice resulted in significant improvements in growth indices, including biomass and micro-indexes, such as antioxidant enzyme activities. The improvements occurred mainly because the AMF formed symbiotic structures with the roots of rice plants, which fixed Hg in the soil. AMF also reduce the bioavailability of Hg by secreting a series of substances and changing the physicochemical properties of the rhizosphere soil. These findings suggest the possibility of using typical co-existing microorganisms for the remediation of soil heavy metal contamination and provide valuable insights into reducing human Hg exposure through rice consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.114776 | DOI Listing |
BMC Genomics
January 2025
State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
Sci Rep
January 2025
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.
View Article and Find Full Text PDFNature
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Soil alkalinization and global warming are predicted to pose major challenges to agriculture in the future, as they continue to accelerate, markedly reducing global arable land and crop yields. Therefore, strategies for future agriculture are needed to further improve globally cultivated, relatively high-yielding Green Revolution varieties (GRVs) derived from the SEMIDWARF 1 (SD1) gene. Here we propose that precise regulation of the phytohormone gibberellin (GA) to optimal levels is the key to not only confer alkali-thermal tolerance to GRVs, but also to further enhance their yield.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA.
Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.
View Article and Find Full Text PDFNat Commun
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Research on silicon (Si) biogeochemistry and its beneficial effects for plants has received significant attention over several decades, but the reasons for the emergence of high-Si plants remain unclear. Here, we combine experimentation, field studies and analysis of existing databases to test the role of temperature on the expression and emergence of silicification in terrestrial plants. We first show that Si is beneficial for rice under high temperature (40 °C), but harmful under low temperature (0 °C), whilst a 2 °C increase results in a 37% increase in leaf Si concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!