Glycosidase mechanisms: Sugar conformations and reactivity in endo- and exo-acting enzymes.

Curr Opin Chem Biol

Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain. Electronic address:

Published: June 2023

The enzymatic breakdown of carbohydrates plays a critical role in several biological events and enables the development of sustainable processes to obtain bioproducts and biofuels. In this scenario, the design of efficient inhibitors for glycosidases that can act as drug targets and the engineering of carbohydrate-active enzymes with tailored catalytic properties is of remarkable importance. To guide rational approaches, it is necessary to elucidate enzyme molecular mechanisms, in particular understanding how the microenvironment modulates the conformational space explored by the substrate. Computer simulations, especially those based on ab initio methods, have provided a suitable atomic description of carbohydrate conformations and catalytic reactions in several glycosidase families. In this review, we will focus on how the active-site topology (pocket or cleft) and mode of cleavage (endo or exo) can affect the catalytic mechanisms adopted by glycosidases, in particular the substrate conformations along the reaction coordinate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2023.102282DOI Listing

Publication Analysis

Top Keywords

glycosidase mechanisms
4
mechanisms sugar
4
sugar conformations
4
conformations reactivity
4
reactivity endo-
4
endo- exo-acting
4
exo-acting enzymes
4
enzymes enzymatic
4
enzymatic breakdown
4
breakdown carbohydrates
4

Similar Publications

YKL-40 is structurally similar to chitotriosidase (CHIT1), an active chitinase, but it lacks chitin-degrading activity while retaining chitin-binding capability. Elevated YKL-40 levels are associated with inflammatory diseases and cancers, making it a valuable biomarker. We previously reported that the W69T substitution in YKL-40 significantly reduces its chitin-binding affinity, identifying W69 as a crucial binding site.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

Background: As a novel oral anti-hyperglycemic agent, sodium-glucose cotransporter 2 inhibitors (SGLT2-i) have been demonstrated to improve cardiovascular outcomes in acute myocardial infarction (AMI) patients with type 2 diabetes mellitus (T2DM). However, the mechanism responsible for the beneficial effects remains unclear. Recently, extensive studies have demonstrated a close relationship between elevated fasting triglyceride-glucose (TyG) index and the risk of AMI.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) contributes to retinal homeostasis, and its metabolic dysfunction is implied in the development of retinal degenerative disease. The isoform M2 of pyruvate kinase (PKM2) is a key factor in cell metabolism, and its function may be affected by insulin-like growth factor 1 (IGF-1). This study aims to investigate the effect of IGF-1 on PKM2 modulation of RPE cells and whether co-treatment with klotho may preserve it.

View Article and Find Full Text PDF

Chitinase-3-like-1 (Chi3l1), also known as YKL-40 or BRP-39, is a highly conserved mammalian chitinase with a chitin-binding ability but no chitinase enzymatic activity. Chi3l1 is secreted by various cell types and induced by several inflammatory cytokines. It can mediate a series of cell biological processes, such as proliferation, apoptosis, migration, differentiation, and polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!