Time metamaterials offer a great potential for wave manipulation, drawing increasing attention in recent years. Here, we explore the exotic wave dynamics of an anisotropic photonic time crystal (APTC) formed by an anisotropic medium whose optical properties are uniformly and periodically changed in time. Based on a temporal transfer matrix formalism, we show that a stationary charge embedded in an APTC emits radiation, in contrast to the case of isotropic photonic time crystals, and its distribution in momentum space is controlled by the APTC band structure. Our approach extends the functionalities of time metamaterials, offering new opportunities for radiation generation and control, with implications for both classical and quantum applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.093803DOI Listing

Publication Analysis

Top Keywords

photonic time
12
stationary charge
8
anisotropic photonic
8
time crystals
8
time metamaterials
8
time
6
charge radiation
4
radiation anisotropic
4
crystals time
4
metamaterials offer
4

Similar Publications

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Metasurface higher-order poincaré sphere polarization detection clock.

Light Sci Appl

January 2025

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.

Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.

View Article and Find Full Text PDF

Development of Molecularly Imprinted Photonic Crystals Sensor for High-Sensitivity, Rapid Detection of Sulfamethazine in Food Samples.

Polymers (Basel)

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.

View Article and Find Full Text PDF

Dynamic Interferometry for Freeform Surface Measurement Based on Machine Learning-Configured Deformable Mirror.

Sensors (Basel)

January 2025

Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Optical freeform surfaces are widely used in imaging and non-imaging systems due to their high design freedom. In freeform surface manufacturing and assembly, dynamic freeform surface measurement that can guide the next operation remains a challenge. To meet this urgent need, we propose a dynamic interferometric method based on a machine learning-configured deformable mirror (DM).

View Article and Find Full Text PDF

Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!