Excitation of hot electrons by energy dissipation under exothermic chemical reactions on metal catalyst surfaces occurs at both solid-gas and solid-liquid interfaces. Despite extensive studies, a comparative study directly comparing electronic excitation by electronically nonadiabatic interactions at solid-gas and solid-liquid interfaces has not been reported. Herein, on the basis of our techniques for monitoring energy dissipation as a chemicurrent using a Pt/n-Si nanodiode sensor, we observed the generation of hot electrons in both gas and liquid phases during HO decomposition. As a result of comparing the current signal and oxygen evolution rate in the two phases, surprisingly, the efficiency of reaction-induced excitation of hot electrons increased by ∼100 times at the solid-liquid interface compared to the solid-gas interface. The boost of hot electron excitation in the liquid phase is due to the presence of an ionic layer lowering the potential barrier at the junction for transferring hot electrons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c00173 | DOI Listing |
Inorg Chem
January 2025
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
Improving catalytic performance by controlling the microstructure of materials has become a hot topic in the field of photocatalysis, such as the surface defect site, multistage layered morphology, and exposed crystal surface. Due to the differences in the metal atomic radius (Mn and Cd) and solubility product constant (MnS and CdS), Mn defect easily occurred in the S/MnCdS (S/0.4MCS) composite.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Laboratory of Electronic Processes, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
The experimental and theoretical study of photovoltage formation in perovskite solar cells under pulsed laser excitation at 0.53 μm wavelength is presented. Two types of solar cells were fabricated on the base of cesium-containing triple cation perovskite films: (1) Cs(FAMA)Pb(IBr) and (2) Cs(FAMA)PbSn(IBr).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China.
Traditional window glazing, with inherently adverse energy-efficient optical properties, leads to colossal energy losses. Energy-saving glass requires a customized optical design for different climate zones. Compared with the widely researched radiative cooling technology which is preferable to be used in low-altitude hot regions; conversely in high-latitude cold regions, high solar transmittance (T) and low mid-infrared thermal emissivity (ε) are the key characteristics of high-performance radiative warming window glass, while the current low-emissivity (low-e) glass is far from ideal.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.
Single-atom manipulation has emerged as an effective strategy for enhancing the photocatalytic efficiency. However, the mechanism of photogenerated carrier dynamics under single-atom modulation remains unclear. Combining first-principles calculations and non-adiabatic molecular dynamics simulations, we systematically studied carrier transfer and recombination in the oxygen reduction reaction of single-atom-doped CN systems.
View Article and Find Full Text PDFACS Nano
January 2025
Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil.
Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!