Purpose: Image-derived artificial intelligence-based short-term risk models for breast cancer have shown high discriminatory performance compared with traditional lifestyle/familial-based risk models. The long-term performance of image-derived risk models has not been investigated.
Methods: We performed a case-cohort study of 8,604 randomly selected women within a mammography screening cohort initiated in 2010 in Sweden for women age 40-74 years. Mammograms, age, lifestyle, and familial risk factors were collected at study entry. In all, 2,028 incident breast cancers were identified through register matching in May 2022 (206 incident breast cancers were found in the subcohort). The image-based model extracted mammographic features (density, microcalcifications, masses, and left-right breast asymmetries of these features) and age from study entry mammograms. The Tyrer-Cuzick v8 risk model incorporates self-reported lifestyle and familial risk factors and mammographic density to estimate risk. Absolute risks were estimated, and age-adjusted AUC model performances (aAUCs) were compared across the 10-year period.
Results: The aAUCs of the image-based risk model ranged from 0.74 (95% CI, 0.70 to 0.78) to 0.65 (95% CI, 0.63 to 0.66) for breast cancers developed 1-10 years after study entry; the corresponding Tyrer-Cuzick aAUCs were 0.62 (95% CI, 0.56 to 0.67) to 0.60 (95% CI, 0.58 to 0.61). For symptomatic cancers, the aAUCs for the image-based model were ≥0.75 during the first 3 years. Women with high and low mammographic density showed similar aAUCs. Throughout the 10-year follow-up, 20% of all women with breast cancers were deemed high-risk at study entry by the image-based risk model compared with 7.1% using the lifestyle familial-based model ( < .01).
Conclusion: The image-based risk model outperformed the Tyrer-Cuzick v8 model for both short-term and long-term risk assessment and could be used to identify women who may benefit from supplemental screening and risk reduction strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414699 | PMC |
http://dx.doi.org/10.1200/JCO.22.01564 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!