A novel ratiometric fluorescence strategy for sulfide ions (S) analysis has been developed using metal-organic framework (MOF)-based nanozyme. NH-Cu-MOF displays blue fluorescence (λem = 435 nm) originating from 2-amino-1,4-benzenedicarboxylic acid ligand. Besides, it possesses oxidase-like activity due to Cu node, which can trigger chromogenic reaction. o-Phenylenediamine (OPD), as a common enzyme substrate, can be oxidized by NH-Cu-MOF to form luminescent products (oxOPD) (λem = 570 nm). Inner filter effect occurs between oxOPD and MOF. Upon exposure to S, oxidase-like activity of MOF is depressed significantly because of the generation of CuS. On one hand, the amount of free Cu decreases, affecting the yielding of oxOPD. On the other hand, CuNPs with larger size are obtained during the oxidation-reduction reaction between Cu and OPD, which show weaker autocatalytic ability for OPD oxidation. These result in the decrease and increase of intensities at 570 and 435 nm, respectively. This method exhibits sensitive and selective responses towards S with LOD of 0.1 μM. Furthermore, such ratiometric strategy has been applied to detect S in food samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.122620 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:
As a heavy metal contaminant, mercury ion (Hg) has caused great harm to environment and life. Mercury ions will migrate and transform in the environment and eventually accumulate in the human body, thus causing human poisoning. Therefore, it is of great significance to detect Hg in the environment and living bodies.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China.
Inorganic phosphori are widely used in food, whose quantitative detection method is of significance. This work presents a Sm-DDB (HDDB = 1,3-di(3',5'-dicarboxylphenyl)benzene), which acts as a ratiometric fluorescence sensor to monitor PO, HPO, and (PO) with high sensitivity. The determination factors of pH, MOF dosage, and fluorescence response time are optimized as 7.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.
The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
Lysosomal pH dysregulation is a critical element of the pathophysiology of neurodegenerative diseases, cancers, and lysosomal storage disorders (LSDs). To study the role of lysosomes in pathophysiology, probes to analyze lysosomal size, positioning, and pH are indispensable tools. Here, we developed and characterized a ratiometric genetically encoded lysosomal pH probe, RpH-ILV, targeted to a subpopulation of lysosomal intraluminal vesicles.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala - 695 581, India.
Tuning the photophysical response is indispensable in realizing the full potential of phosphors to meet the demands of multifunctional applications, such as solid-state lighting and optical thermometry. Herein, orange-red emission from an Sm-based LiYTeO system was studied for the first time with CIE coordinates of (0.488, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!