To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)Te thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped BiTe thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration. We attribute this unusual ferromagnetic response observed in Cr/V-doped BiTe thin films to the dopant-concentration-induced magnetic exchange interaction, which displays evolution from van Vleck-type ferromagnetism in a nontrivial magnetic topological insulator to Ruderman-Kittel-Kasuya-Yosida (RKKY)-type ferromagnetism in a trivial diluted magnetic semiconductor. Our work provides insights into the ferromagnetic properties of magnetically doped topological insulator thin films and facilitates the pursuit of high-temperature quantum anomalous Hall effect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c03827DOI Listing

Publication Analysis

Top Keywords

thin films
20
topological insulator
16
dopant concentration
12
dopant-concentration-induced magnetic
8
magnetic exchange
8
exchange interaction
8
insulator thin
8
quantum anomalous
8
anomalous hall
8
bite thin
8

Similar Publications

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

Sequential Infiltration Synthesis of Cadmium Sulfide Discrete Atom Clusters.

Angew Chem Int Ed Engl

January 2025

Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.

Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).

View Article and Find Full Text PDF

Stabilizing Lattice Oxygen of Bi2O3 by Interstitial Insertion of Indium for Efficient Formic Acid Electrosynthesis.

Angew Chem Int Ed Engl

January 2025

University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.

Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.

View Article and Find Full Text PDF

We demonstrate high-throughput evaluation of the half-metallicity of CoMnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co Mn Si composition-spread thin films for  = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The 2-ordering and (001)-oriented epitaxial growth of CoMnSi are confirmed by X-ray diffraction for  = 18-40%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!