Separable Nanovaccines with Stealthy Bioadhesive Capability for Durable Cancer Immunotherapy.

J Am Chem Soc

Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States.

Published: March 2023

Because of tumor heterogeneity and the immunosuppressive tumor microenvironment, most cancer vaccines typically do not elicit robust antitumor immunological responses in clinical trials. In this paper, we report findings about a bioadhesive nanoparticle (BNP)-based separable cancer vaccine, FeSHK@B-ovalbumin (OVA), to target multi-epitope antigens and exert effective cancer immunotherapy. After the FeSHK@B-OVA "nanorocket" initiates the "satellite-rocket separation" procedure in the acidic tumor microenvironment, the FeSHK@B "launch vehicle" can amplify intracellular oxidative stress persistently. This procedure allows for bioadhesiveness-mediated prolonged drug retention within the tumor tissue and triggers the immunogenic death of tumor cells that transforms the primary tumors into antigen depots, which acts synergistically with the OVA "satellite" to trigger robust antigen-specific antitumor immunity. The cooperation of these two immunostimulants not only efficiently inhibits the primary tumor growth and provokes durable antigen-specific immune activation but also activates a long-term and robust immune memory effect to resist tumor rechallenge and metastasis. These results highlight the enormous potential of FeSHK@B-OVA to serve as an excellent therapeutic and prophylactic cancer nanovaccine. By leveraging the antigen depots and the synergistic effect among multi-epitope antigens, such a nanovaccine strategy with stealthy bioadhesion may offer a straightforward and efficient approach to developing various cancer vaccines for different types of tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c12986DOI Listing

Publication Analysis

Top Keywords

cancer immunotherapy
8
tumor microenvironment
8
cancer vaccines
8
multi-epitope antigens
8
antigen depots
8
tumor
7
cancer
6
separable nanovaccines
4
nanovaccines stealthy
4
stealthy bioadhesive
4

Similar Publications

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast Cancer Res Treat

January 2025

Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.

Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.

Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.

View Article and Find Full Text PDF

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

A pan-cancer analysis: predictive role of ZNF32 in cancer prognosis and immunotherapy response.

Discov Oncol

January 2025

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.

View Article and Find Full Text PDF

HIFU induces reprogramming of the tumor immune microenvironment in a pancreatic cancer mouse model.

Med Mol Morphol

January 2025

Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.

This study evaluates the effects of different high-intensity focused ultrasound irradiation (HIFU) methods on local tumor suppression and systemic antitumor effects, including the abscopal effect, in a mouse model of pancreatic cancer. To ascertain the efficacy of the treatment, pancreatic cancer cells were injected into the thighs of mice and HIFU was applied on one side using continuous waves or trigger pulse waves. Then, tumor volume, tissue changes, and immune marker levels were analyzed.

View Article and Find Full Text PDF

T-cell redirecting therapy (TCRT), specifically chimeric antigen receptor T-cell therapy (CAR T-cells) and bispecific T-cell engagers (TCEs) represent a remarkable advance in the treatment of multiple myeloma (MM). There are several products available around the world and several more in development targeting primarily B-cell maturation antigen (BCMA) and G protein-coupled receptor class C group 5 member D (GRPC5D). The relatively rapid availability of multiple immunotherapies brings the necessity to understand how a certain agent may affect the safety and efficacy of a subsequent immunotherapy so MM physicians and patients can aim at optimal sequential use of these therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!