Ferroptosis is a recently identified form of programmed cell death which is different from apoptosis, pyroptosis, necrosis, and autophagy. It is uniquely defined by redox-active iron-dependent hydroxy-peroxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids and a loss of lipid peroxidation repair capacity. Ferroptosis has recently been implicated in multiple human diseases, such as tumors, ischemia-reperfusion injury, acute kidney injury, neurological diseases, and asthma among others. Intriguingly, ferroptosis is associated with placental physiology and trophoblast injury. Circumstances such as accumulation of lipid reactive oxygen species (ROS) due to hypoxia-reperfusion and anoxia-reoxygenation of trophoblast during placental development, the abundance of trophoblastic iron and PUFA, physiological uterine contractions, or pathological placental bed perfusion, cause placental trophoblasts' susceptibility to ferroptosis. Ferroptosis of trophoblast can cause placental dysfunction, which may be involved in the occurrence and development of placenta-related diseases such as gestational diabetes mellitus, preeclampsia, fetal growth restriction, preterm birth, and abortion. The regulatory mechanisms of trophoblastic ferroptosis still need to be explored further. Here, we summarize the latest progress in trophoblastic ferroptosis research on placental-related diseases, provide references for further understanding of its pathogenesis, and propose new strategies for the prevention and treatment of placental-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43032-023-01193-0DOI Listing

Publication Analysis

Top Keywords

placental-related diseases
12
ferroptosis placental-related
8
trophoblast placental
8
trophoblastic ferroptosis
8
ferroptosis
7
diseases
6
placental
5
role ferroptosis
4
diseases ferroptosis
4
ferroptosis identified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!