Virome comparison (VC): A novel approach to comparing viromes based on virus species specificity and virome specificity diversity.

J Med Virol

Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

Published: April 2023

The human virome, or the viral communities distributed on or in our body, is estimated to contain about 380 trillion of viruses (individuals), which has far reaching influences on our health and diseases. Obviously, the sheer numbers of viruses alone make the comparisons of two or multiple viromes extremely challenging. In fact, the theory of computation in computer science for so-termed NP-hard problems stipulates that the problem is unsolvable when the size of virome is sufficiently large even with fastest supercomputers. Practically, one has to develop heuristic and approximate algorithms to obtain practically satisfactory solutions for NP-hard problems. Here, we extend the species-specificity and specificity-diversity framework to develop a method for virome comparison (VC). The VC method consists of a pair of metrics: virus species specificity (VS) and virome specificity diversity (VSD) and corresponding pair of random search algorithms. Specifically, the VS and VS permutation (VSP) test can detect unique virus species (US) or enriched virus species (ES) in each virome (treatment), and the VSD and VSD permutation (VSDP) test can further determine holistic differences between two viromes or their subsets (assemblages of viruses). The test with four virome data sets demonstrated that the VC method is effective, efficient, and robust.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.28682DOI Listing

Publication Analysis

Top Keywords

virus species
16
virome
8
virome comparison
8
species specificity
8
specificity virome
8
virome specificity
8
specificity diversity
8
np-hard problems
8
comparison novel
4
novel approach
4

Similar Publications

FTO Alleviates Hepatic Ischemia-Reperfusion Injury by Regulating Apoptosis and Autophagy.

Gastroenterol Res Pract

January 2025

Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Despite N-methyladenosine (mA) being closely involved in various pathophysiological processes, its potential role in liver injury is largely unknown. We designed the current research to study the potential role of fat mass and obesity-associated protein (FTO), an mA demethylase, on hepatic ischemia-reperfusion injury (IRI). Wild-type mice injected with an adeno-associated virus carrying fat mass and obesity-associated protein (AAV-FTO) or adeno-associated virus carrying green fluorescent protein (GFP) (AAV-GFP) were subjected to a hepatic IRI model in vivo.

View Article and Find Full Text PDF

West Nile virus (WNV) is a zoonotic mosquito-borne virus which is emerging across Europe, largely due to climate and other environmental changes. Detection of WNV at increasingly northern latitudes raises concern that WNV may be introduced to Britain, where ecological conditions could eventually support sustained transmission. Establishment of WNV depends on spatial and temporal overlap between infectious migratory birds and native vectors.

View Article and Find Full Text PDF

GhWRKY207 improves drought tolerance through promoting the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum.

Plant Sci

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China. Electronic address:

Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors are essential regulators of drought tolerance in multiple plants. However, whether and how GhWRKY207 modulates cotton response to drought stress is unclear. In this study, we determined that GhWRKY207 expression was high in leaves and induced by drought stress.

View Article and Find Full Text PDF

Molecular ecology of novel amdoparvoviruses and old protoparvoviruses in Spanish wild carnivorans.

Infect Genet Evol

January 2025

Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Miguel Servet 177, 50013 Zaragoza, Spain; Fundación ARAID, Zaragoza, Av. Ranillas, 1-D, 50018 Zaragoza, Spain; Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 252, Santiago, Chile. Electronic address:

Wild carnivorans are key hosts of parvoviruses of relevance for animal health and wildlife conservation. However, the distribution and diversity of parvoviruses among wild carnivorans are under-investigated, particularly in Southern Europe. We evaluated the presence, spread, and diversity of multi-host protoparvoviruses (canine parvovirus type 2 (CPV-2), feline panleukopenia virus (FPV)), and amdoparvoviruses in 12 carnivoran species from Northern Spain to explore viral ecology.

View Article and Find Full Text PDF

SHMT2 regulates CD8+ T cell senescence via the reactive oxygen species axis in HIV-1 infected patients on antiretroviral therapy.

EBioMedicine

January 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China. Electronic address:

Background: Although antiretroviral therapy (ART) effectively inhibits viral replication, it does not fully mitigate the immunosenescence instigated by HIV infection. Cellular metabolism regulates cellular differentiation, survival, and senescence. Serine hydroxymethyltransferase 2 (SHMT2) is the first key enzyme for the entry of serine into the mitochondria from the de novo synthesis pathway that orchestrates its conversion glutathione (GSH), a key molecule in neutralising ROS and ensuring the stability of the immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!