In humans, parent-child neural synchrony has been shown to support early communication, social attunement and learning. Further, some animal species (including rodents and bats) are now known to share neural synchrony during certain forms of social behaviour. However, very little is known about the developmental origins and sequelae of neural synchrony, and whether this neural mechanism might play a causal role in the control of social and communicative behaviour across species. Rodent models are optimal for exploring such questions of causality, with a plethora of tools available for both disruption/induction (optogenetics) and even mechanistic dissection of synchrony-induction pathways (in vivo electrical or optical recording of neural activity). However, before the benefits of rodent models for advancing research on parent-infant synchrony can be realised, it is first important to address a gap in understanding the forms of parent-pup synchrony that occur during rodent development, and how these social relationships evolve over time. Accordingly, this review seeks to identify parent-pup social behaviours that could potentially drive or facilitate synchrony and to discuss key differences or limitations when comparing mouse to human models of parent-infant synchrony. Uniquely, our review will focus on parent-pup dyadic social behaviours that have particular analogies to the human context, including instrumental, social interactive and vocal communicative behaviours. This review is intended to serve as a primer on the study of neurobehavioral synchrony across human and rodent dyadic developmental models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jne.13241 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Ernst Strüngmann Institute, Frankfurt am Main 60528, Germany.
The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.
View Article and Find Full Text PDFFront Hum Neurosci
January 2025
School of Therapy, Counseling and Human Development, Faculty of Education, University of Haifa, Haifa, Israel.
Interest has been growing in the use of mindfulness meditation (MM) as a therapeutic practice, as accumulating evidence highlights its potential to effectively address a range of mental conditions. While many fMRI studies focused on neural activation and functional connectivity during meditation, the impact of long-term MM practice on spontaneous brain activity, and on the expression of resting state networks over time, remains unclear. Here, intrinsic functional network dynamics were compared between experienced meditators and meditation-naïve participants during rest.
View Article and Find Full Text PDFPsychother Res
January 2025
Department of Psychology, University of Haifa, Haifa, Israel.
Objective.: There is a growing consensus that interpersonal processes are key to understanding psychotherapy. How might that be reflected in the brain? Recent research proposes that inter-brain synchrony is a crucial neural component of interpersonal interaction.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Endocrinology and Nutrition Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Medicine Department, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain.
Individuals with Prader Willi syndrome (PWS) often exhibit behavioral difficulties characterized by deficient impulse regulation and obsessive-compulsive features resembling those observed in obsessive-compulsive disorder. The genetic configuration of PWS aligns with molecular and neurophysiological findings suggesting dysfunction in the inhibitory gamma-aminobutyric acid (GABA) interneuron system may contribute to its clinical manifestation. In the cerebral cortex, this dysfunction is expressed as desynchronization of local neural activity.
View Article and Find Full Text PDFDev Rev
March 2025
Child Study Center, Yale School of Medicine, 230 S Frontage Rd, New Haven, CT 06519, USA.
Parent-child interactions shape children's cognitive outcomes such that caregivers can guide attention and facilitate learning opportunities. These interactions provide infants and toddlers with rich, naturalistic experiences that engage complex cognitive functions and lay the groundwork for the development of mature executive functions. Although most caregivers seek to engage children optimally, they can unintentionally impede this developmental process by being under-engaged or intrusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!