Since bacteria in biofilms are inherently resistant to antibiotics and biofilm-associated infections pose a serious threat to global public health, new therapeutic agents and schemes are urgently needed to meet clinical requirements. Here two quaternary ammonium-functionalized biphen[n]arenes (WBPn, n=4, 5) were designed and synthesized with excellent anti-biofilm potency. Not only could they inhibit the assembly of biofilms, but also eradicate intractable mature biofilms formed by Gram-positive S. aureus and Gram-negative E. coli bacterial strains. Moreover, they could strongly complex a conventional antibiotic, cefazolin sodium (CFZ) with complex stability constants of (7.41±0.29)×10 M for CFZ/WBP4 and (4.98±0.49)×10 M for CFZ/WBP5. Combination of CFZ by WBP4 and WBP5 synergistically enhanced biofilm eradication performance in vitro and statistically improved healing efficacy on E. coli-infected mice models, providing a novel supramolecular strategy for combating biofilm-associated infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202301857 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!