The development of a data-driven science paradigm is greatly revolutionizing the process of materials discovery. Particularly, exploring novel nonlinear optical (NLO) materials with the birefringent phase-matching ability to deep-ultraviolet (UV) region is of vital significance for the field of laser technologies. Herein, a target-driven materials design framework combining high-throughput calculations (HTC), crystal structure prediction, and interpretable machine learning (ML) is proposed to accelerate the discovery of deep-UV NLO materials. Using a dataset generated from HTC, an ML regression model for predicting birefringence is developed for the first time, which exhibits a possibility of achieving fast and accurate prediction. Essentially, crystal structures are adopted as the only known input of this model to establish a close structure-property relationship mapping birefringence. Utilizing the ML-predicted birefringence which can affect the shortest phase-matching wavelength, a full list of potential chemical compositions based on an efficient screening strategy is identified. Further, eight structures with good stability are discovered to show potential applications in the deep-UV region, owing to their promising NLO-related properties. This study provides a new insight into the discovery of NLO materials and this design framework can identify desired materials with high performances in the broad chemical space at a low computational cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202300848 | DOI Listing |
Small Methods
January 2025
National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Compounds having hexagonal tungsten oxides (HTO) topology are of intense research interests owing to their potential functional properties, such as nonlinear optical (NLO) performances. However, most of the reported HTO-type compounds exhibit narrow optical bandgaps because of the d-d electronic transition of compositional d transition metals and lone pair electrons effect of Se/Te, which hinder their applications in the high-energy field, such as deep-ultraviolet (deep-UV) region. In this work, a new fluorophosphate, (NH)[ScF(PO)](POF) exhibiting HTO-topological structures is reported.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
Two-dimensional (2D) organic-inorganic hybrid metal halides (OIMHs), characterized by noncentrosymmetric structures arising from the incorporation of chiral organic molecules that break inversion symmetry, have attracted significant attention. Particularly, chiral-polar 2D OIMHs offer a unique platform for multifunctional applications, as the coexistence of chirality and polarity enables the simultaneous manifestation of distinct properties such as nonlinear optical (NLO) effects, circular dichroism (CD), and ferroelectricity. In this study, we report the first synthesis of hafnium (Hf)-based chiral 2D OIMHs, achieved through the strategic incorporation of -substituents on the benzene ring of chiral organic components.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.
Metal halide borates are promising candidates for high-performance nonlinear optical (NLO) applications, yet the origins of their second harmonic generation (SHG) properties remain unclear. Using atom response theory combined with density functional theory calculations, this study investigates why halogen substitution leads to distinctly different SHG responses in halide monoborates (PbBOX) versus halide pentaborates (PbBOX). We find that the SHG origins vary between these two families due to differences in the strength of the Pb-X interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!