Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,β-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including β-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946890 | PMC |
http://dx.doi.org/10.1002/anie.202303391 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Zhejiang Uiversity, Chemistry, 866 Yuhangtang Road, 310058, Hangzhou, CHINA.
Heck silylation of unactivated alkenes is an efficient strategy for the synthesis of useful organosilicon compounds. However, extensive efforts have been dedicated to only achieving achiral molecules. Herein, a highly regio- and enantioselective cobalt-catalyzed Heck silylation of unactivated alkenes with hydrosilanes is reported for the first time, providing access to axially chiral alkenes in good to excellent yields with 87-98% ee.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
Herein, we report a formal C-C bond azidation and cyanation of unactivated aliphatic ketones using commercially available tosyl azide and cyanide, respectively. A visible-light-mediated organophotocatalyst enables radical azidation and cyanation of ketone-derived pro-aromatic dihydroquinazolinones (under mostly redox-neutral conditions) as supported by preliminary mechanistic studies. These metal-free and scalable protocols can be used to synthesize tertiary, secondary, and primary alkyl azides and nitriles with good functional group tolerance and postsynthetic diversification of the azide group, including bioconjugation.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
A visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N has been achieved, leading to a series of azidated pyrrolo[1,2-]indoles under photocatalyst-free conditions. Notably, an EDA complex derived from the electron-rich indole derivatives and Togni-N served as the key intermediate in this reaction.
View Article and Find Full Text PDFOrg Lett
January 2025
State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China.
An anaerobic 1,2-/1,3-hydroxytrifluoromethylation of unactivated alkenes is described. This reaction proceeds in mild and environmentally friendly conditions without photocatalyst and metal catalyst, allowing access to a wide range of β- and γ-trifluoromethyl alcohols. Preliminary mechanistic investigations indicate that the accomplishment of this protocol relies on the dual functionality of the photoexcited triplet nitroarenes, which serve as the oxygen atom source and enable the single-electron transfer (SET) process with CFSONa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!