CD109 antigen on the endothelial cell surface plays an important role in vascular pathology. The aim of the work was to investigate the effect of the immobilization of CD109 antigen with specific antibodies on nanomechanical properties of human umbilical endothelial cells (HUVECs) using atomic force microscopy in quantitative nanomechanical property mapping mode (PeakForce QNM). Anti-CD109 antibodies induced significant stiffening of the cell surface Me(LQ; UQ): in 1.45(1.07;2.29) times with respect to control cells for fixed cells and in 4.9(3.6;5.9) times with respect to control cells for living cells, and changes in the spatial distribution of cell surface mechanical properties. The changes in the HUVEC's mechanical properties were accompanied by the activation of the TGF-/Smad2/3 signaling pathway and reorganization of the vimentin and actin cytoskeletal elements. Our findings show that blocking CD109 antigen using anti-CD109 antibodies leads in HUVECs to the processes similar to that occur after cell TGF-β-signaling activation. Therefore, we suggest that CD109 antigen may be involved in regulating the mechanical behavior of endothelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cm.21753 | DOI Listing |
Neuroscience
January 2025
Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang 050000, China; Beijing Geriatric Healthcare and Disease Prevention Center, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China. Electronic address:
CD109 is a multifunctional coreceptor, whose function has been widely studied in tumor progression and metastasis. One of the reported primary roles of CD109 involves down-regulating TGFβ signaling. However, the role of CD109 in central nervous system, especially neurodegenerative disease, is barely known.
View Article and Find Full Text PDFBMB Rep
December 2024
Hicelltech Inc., Yangsan 50612, Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
Ovarian cancer is the deadliest gynecological cancer because it has few early symptoms and metastasizes to the surrounding organs at advanced stages. Cancer stem cells (CSCs), a subpopulation of cells with acquired drug resistance, contribute to the recurrence and poor prognosis of ovarian cancer. CD109, a cell surface glycoprotein, has been reported to be a marker of CSCs; however, it remains unclear whether CD109 is secreted by CSCs.
View Article and Find Full Text PDFStem Cells Transl Med
August 2024
Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China.
Mechanical force-mediated bone remodeling is crucial for various physiological and pathological processes involving multiple factors, including stem cells and the immune response. However, it remains unclear how stem cells respond to mechanical stimuli to modulate the immune microenvironment and subsequent bone remodeling. Here, we found that mechanical force induced increased expression of CD109 on periodontal ligament stem cells (PDLSCs) in vitro and in periodontal tissues from the force-induced tooth movement rat model in vivo, accompanied by activated alveolar bone remodeling.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
May 2024
Ningbo Clinical Pathology Diagnosis Center, Ningbo 315021, China.
The purpose of this study was to investigate the expression of CD109 and its clinicopathological significance in oral squamous cell carcinoma. Data from TIMER2.0 and UALCAN were analyzed to assess CD109 mRNA levels in OSCC.
View Article and Find Full Text PDFNeurosci Lett
June 2024
Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan. Electronic address:
Axonal regeneration is restricted in adults and causes irreversible motor dysfunction following spinal cord injury (SCI). In contrast, neonates have prominent regenerative potential and can restore their neural function. Although the distinct cellular responses in neonates have been studied, how they contribute to neural recovery remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!