Cancers are heterogeneous diseases caused by accumulated mutations or abnormal alterations at multi-levels of biological processes including genomics, epigenomics, transcriptomics, and proteomics. There is a great clinical interest in identifying cancer molecular subtypes for disease prognosis and personalized medicine. Integrative clustering is a powerful unsupervised learning method that has been increasingly used to identify cancer molecular subtypes using multi-omics data including somatic mutations, DNA copy numbers, DNA methylation, and gene expression. Integrative clustering methods are generally classified into model-based or nonparametric approaches. In this chapter, we will give an overview of the frequently used model-based methods, including iCluster, iClusterPlus, and iClusterBayes, and the nonparametric method, integrative nonnegative matrix factorization (intNMF). We will use the integrative analyses of uveal melanoma and lower-grade glioma to illustrate these representative methods. Finally, we will discuss the strengths and limitations of these representative methods and give suggestions for performing integrative analyses of cancer multi-omics data in practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950392 | PMC |
http://dx.doi.org/10.1007/978-1-0716-2986-4_5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!