Herein, we report an exciting synthetic procedure for the scalable and controllable fabrication of covalently crosslinked poly(ionic liquid) (PIL) nanoporous membranes (CPILMs) in water solution under ambient conditions. We found that the pore sizes, flexibility and compositions of freestanding CPILMs can be finely tailored by a rational structural choice of PIL, diketone and aldehyde. Studies on the CPILM formation mechanism revealed that hydrogen bonding-induced phase separation of amino-functionalized homo-PIL between its polar and apolar domains coupled with structural rearrangements due to the Debus Radsizewski reaction-triggered ambient covalent crosslinking process created a stable three-dimensionally interconnected pore system in water solution. Employing structurally stable CPILMs in ion sieving devices resulted in an excellent Li /Mg separation efficiency due to the positively charged nature and "Donann" effects. This green, facile yet versatile approach to the production of CPILMs is a conceptually distinct and commercially interesting strategy for making useful nanoporous functional polyelectrolyte membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202302168 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:
Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Functional Materials, FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8 182 00, Czech Republic.
Here, we investigate the interactions between five representative gaseous analytes and two poly(ionic liquids) (PILs) based on the sulfopropyl acrylate polyanion in combination with the alkylphosphonium cations, P and P, and their nanocomposites with fullerenes (C, C) to reveal the potential of PILs as sensitive layers for gas sensors. The gaseous analytes were chosen based on their molecular size (all of them containing two carbon atoms) and variation of functional groups: alcohol (ethanol), nitrile (acetonitrile), aldehyde (acetaldehyde), halogenated alkane (bromoethane), and carboxylic acid (acetic acid). The six variations of PILs-PSPA (), PSPA + C ( + C), PSPA + C ( + C), and PSPA (), PSPA + C ( + C), PSPA + C ( + C)-were characterized by UV-vis and Raman spectroscopy, and their interactions with each gaseous analyte were studied using electrochemical impedance spectroscopy.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China.
The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, University of North Texas1508 W Mulberry St, Denton, TX, 76201, USA.
Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!