AI Article Synopsis

  • The sustainable chemical industry aims to develop efficient and safe methods for creating chiral building blocks from renewable resources.
  • Research focuses on mandelate derivatives, important intermediates in pharmaceuticals, which currently rely on toxic cyanide for production.
  • The study demonstrates a new biocatalytic approach using engineered (S)-4-hydroxymandelate synthase (HmaS) to synthesize both (S)- and (R)-mandelate derivatives with high efficiency and atom economy, offering a safer, cyanide-free production method.

Article Abstract

The development of mild, efficient, and enantioselective methods for preparing chiral building blocks from simple, renewable carbon units has been a long-term goal of the sustainable chemical industry. Mandelate derivatives are valuable pharmaceutical intermediates and chiral resolving agents, but their manufacture relies heavily on highly toxic cyanide. Herein, we report (S)-4-hydroxymandelate synthase (HmaS)-centered biocatalytic cascades for the synthesis of mandelates from benzaldehydes and glycine. We show that HmaS can be engineered to perform R-selective hydroxylation by single-point mutation, empowering the stereodivergent synthesis of both (S)- and (R)-mandelate derivatives. These biocatalytic cascades enabled the production of various mandelate derivatives with high atom economy as well as excellent yields (up to 98 %) and ee values (up to >99 %). This methodology offers an effective cyanide-free technology for greener and sustainable production of mandelate derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202300906DOI Listing

Publication Analysis

Top Keywords

biocatalytic cascades
12
mandelate derivatives
12
stereodivergent synthesis
8
production mandelate
8
asymmetric extension
4
extension aldehydes
4
aldehydes biocatalytic
4
cascades stereodivergent
4
synthesis mandelic
4
mandelic acids
4

Similar Publications

Salidroside is a phenylpropanoid glycoside with wide applications in the food, pharmaceutical, and cosmetic industries; however, the plant genus Rhodiola, the natural source of salidroside, has slow growth and limited distribution. In this study, we designed a novel six-enzyme biocatalytic cascade for the efficient production of salidroside, utilizing cost-effective bio-based L-Tyrosine as the starting material. A preliminary analysis revealed that the poor thermostability of the Bacillus licheniformis UDP-glycosyltransferase (EC 2.

View Article and Find Full Text PDF

Rational multienzyme architecture design with iMARS.

Cell

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center for Proteins & Bits, Lumy Biotechnology, Changzhou, Jiangsu 213200, China. Electronic address:

Biocatalytic cascades with spatial proximity can orchestrate multistep pathways to form metabolic highways, which enhance the overall catalytic efficiency. However, the effect of spatial organization on catalytic activity is poorly understood, and multienzyme architectural engineering with predictable performance remains unrealized. Here, we developed a standardized framework, called iMARS, to rapidly design the optimal multienzyme architecture by integrating high-throughput activity tests and structural analysis.

View Article and Find Full Text PDF

Self-sufficient biocatalytic cascade for the continuous synthesis of danshensu in flow.

Appl Microbiol Biotechnol

January 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.

A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD as cofactor.

View Article and Find Full Text PDF

Biocatalytic Hydrogenation of Biomass-Derived Furan Aldehydes to Alcohols.

J Agric Food Chem

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.

The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts.

View Article and Find Full Text PDF

Enzymatic Cascades for Stereoselective and Regioselective Amide Bond Assembly.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.

Amide bond formation is fundamental in nature and is widely used in the synthesis of pharmaceuticals and other valuable products. Current methods for amide synthesis are often step and atom inefficient, requiring the use of protecting groups, deleterious reagents and organic solvents that create significant waste. The development of cleaner and more efficient catalytic methods for amide synthesis remains an urgent unmet need.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!