Electrically Amplified Circularly Polarized Luminescence by a Chiral Anion Strategy.

Angew Chem Int Ed Engl

Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.

Published: May 2023

AI Article Synopsis

  • The development of circularly polarized electroluminescence (CPEL) faces challenges due to the high cost and complexity of creating suitable chiral materials and issues with chirality loss in devices.
  • Researchers synthesized diastereomeric Ir and Ru complexes using chiral camphorsulfonate counteranions to enhance performance in circularly polarized light-emitting electrochemical cells.
  • Incorporating a chiral ionic liquid significantly improved device performance and electroluminescence dissymmetry factors, indicating that chiral anions are crucial for enhancing CPELs in these systems.

Article Abstract

The development of circularly polarized electroluminescence (CPEL) is currently hampered by the high difficulty and cost in the syntheses of suitable chiral materials and the notorious chirality diminishment issue in electrical devices. Herein, diastereomeric Ir and Ru complexes with chiral (±)-camphorsulfonate counteranions are readily synthesized and used as the active materials in circularly polarized light-emitting electrochemical cells to generate promising CPELs. The addition of the chiral ionic liquid (±)-1-butyl-3-methylimidazole camphorsulfonate into the active layer significantly improves the device performance and the electroluminescence dissymmetry factors (≈10 ), in stark contrast to the very weak circularly polarized photoluminescence of the spin-coated films of these diastereomeric complexes. Control experiments with enantiopure Ir complexes suggest that the chiral anions play a dominant role in the electrically-induced amplification of CPELs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202302160DOI Listing

Publication Analysis

Top Keywords

circularly polarized
16
diastereomeric complexes
8
complexes chiral
8
chiral
5
electrically amplified
4
circularly
4
amplified circularly
4
polarized
4
polarized luminescence
4
luminescence chiral
4

Similar Publications

Upconverted circularly polarized luminescence (UC-CPL) active organic and organic-inorganic composite materials have garnered increasing attention due to their vast potential applications in areas such as 3D displays, encryptions, spintronics and optoelectronic devices. However, effective methods for fabricating chiral inorganic materials exhibiting UC-CPL remain a challenge. Herein, we propose an approach for the synthesis of UC-CPL active chiral mesostructured CeO2 powders (CMCs) via a hydrothermal growth method, using L/D-aspartic acid as symmetry-breaking and structure-directing agents.

View Article and Find Full Text PDF

Measurement of the Spin Polarization of a Slow Positron Beam Using Circularly Polarized Microwave Radiation.

Phys Rev Lett

December 2024

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom.

We have measured the spin polarization of a slow positron beam via state-selective depopulation of 2^{3}S_{1} positronium atoms, generated by passing the beam through a gas cell. Our method employs circularly polarized microwave radiation to drive 2^{3}S_{1}→2^{3}P_{1} transitions, for which either Δm_{J}=+1 or Δm_{J}=-1, and relies on the fact that asymmetries between the two cases yield the underlying positron beam polarization. Using this technique we show that the polarization of a positron beam derived from a solid neon moderator may be increased from 30% to 90% by increasing the moderator thickness, with an associated reduction in beam intensity of 60%.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) film attracted considerable attention in information storage and encryption, three-dimensional display, and chiral recognition. However, due to the limited molecular mobility within thin film, achieving a high asymmetry factor and non-contact modulation of CPL remain challenging. In this work, color-switchable homochiral CPL films with high luminescence asymmetry factor (glum~0.

View Article and Find Full Text PDF

Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula.

View Article and Find Full Text PDF

The exploration of circularly polarized luminescence is important for advancing display and lighting technologies. Herein, by utilizing isomeric molecular engineering, a novel series of chiral molecules are designed to exploit both thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) mechanisms for efficient luminescence. The cooperation of a small singlet-triplet energy gap, moderate spin-orbital coupling (SOC), and large oscillator strength enables efficient TADF emission, with photoluminescence quantum yields exceeding 90%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: