Ionic liquid (IL)-based gels (ionogels) have received considerable attention due to their unique advantages in ionic conductivity and their biphasic liquid-solid phase property. In ionogels, the negligibly volatile ionic liquid is retained in the interconnected 3D pore structure. On the basis of these physical features as well as the chemical properties of well-chosen ILs, there is emerging interest in the anti-bacterial and biocompatibility aspects. In this review, the recent achievements of ionogels for biomedical applications are summarized and discussed. Following a brief introduction of the various types of ILs and their key physicochemical and biological properties, the design strategies and fabrication methods of ionogels are presented by means of different confining networks. These sophisticated ionogels with diverse functions, aimed at biomedical applications, are further classified into several active domains, including wearable strain sensors, therapeutic delivery systems, wound healing and biochemical detections. Finally, the challenges and possible strategies for the design of future ionogels by integrating materials science with a biological interface are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cs00652aDOI Listing

Publication Analysis

Top Keywords

biomedical applications
12
ionic liquid
8
ionogels
7
ionogels advances
4
advances design
4
design material
4
material properties
4
properties emerging
4
emerging biomedical
4
applications ionic
4

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Propidium Monoazide is Unreliable for Quantitative Live-Dead Molecular Assays.

Anal Chem

January 2025

Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Propidium monoazide (PMA) is a dye that distinguishes between live and dead cells in molecular assays like the Polymerase Chain Reaction (PCR). It works by cross-linking to the DNA of cells that have compromised membranes or extracellular DNA upon photoactivation, making the DNA inaccessible for amplification. Currently, PMA is used to detect viable pathogens and alleviate systemic bias in the microbiome analysis of samples using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.

View Article and Find Full Text PDF

CellREADR: An ADAR-based RNA sensor-actuator device.

Methods Enzymol

January 2025

Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.

View Article and Find Full Text PDF

Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!