Long-term storage is necessary to mitigate for seasonal variation in algae productivity, to preserve biomass quality and to guarantee a constant biomass supply to a conversion facility. While ensiling has shown promise as a solution, biomass attributes for successful storage are poorly understood. Storage studies of Monoraphidium sp. biomass indicate a strong correlation between nitrogen management in algae cultivation and stability of post-harvest algae biomass. Algae cultivated with periodic nitrogen addition were stored poorly (>20% loss, dry basis) compared to biomass from nitrogen depleted cultivation (8% loss, dry basis). A follow-up study compared the post-harvest stability of Monoraphidium biomass cultivated in nitrogen-deplete or nitrogen-replete conditions. Replete biomass experienced the largest degradation (24%, dry basis), while deplete biomass experienced the least (10%, dry basis). Dry matter loss experienced among blends of each correlated positively with nitrogen-replete biomass content. The composition of the post-storage algae microbial community was also affected by cultivation conditions, with Clostridia species being more prevalent in stored biomass obtained from nitrogen-replete cultivations. Nitrogen management has long been known to influence algae biomass productivity and biochemical composition; here, we demonstrate that it also strongly influences the stability of post-harvest algae biomass in anaerobic storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548854 | PMC |
http://dx.doi.org/10.1093/jimb/kuad004 | DOI Listing |
Microb Pathog
January 2025
Department of Chemistry, Seth Kesarimal Porwal College, Kamptee, R.T.M. Nagpur University Nagpur, 441001, India. Electronic address:
Microalgae are a valuable source of renewable biomass that contains lipids, proteins, and bioactive compounds. It is a promising sustainable candidate for green synthesis of nanomaterials (NMs). The present work announces a novel biogenic approach for synthesis of platinum nanoparticles (Pt NPs) employing Tetradesmus obliquus (green microalgae) as a green reducer and surfactant.
View Article and Find Full Text PDFFood Chem
January 2025
Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville 41013, Spain; Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, University of Seville, Spain.
This study provides a detailed characterization of the invasive algae Rugulopteryx okamurae, highlighting its nutritional composition, mineral content, and potential bioactive compounds. This biomass contains 14.18 % protein, 21.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2024
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemical Oceanography, Cochin University of Science and Technology, Kochi, Kerala, India.
The alga contains salt and heavy metals that are accumulated in algae poses a significant challenge to the safe use of algae in soil fertilization and other applications. This study examines the relevance of algal biomass as an environmentally friendly fertilizer, thereby contributing to sustainable coastal management practices. In this study, the hot and cold extraction method were done to obtain the Ulva rigida extract.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!