Analyzing CRISPR screens in non-conventional microbes.

J Ind Microbiol Biotechnol

Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.

Published: February 2023

Unlabelled: The multifaceted nature of CRISPR screens has propelled advancements in the field of functional genomics. Pooled CRISPR screens involve creating programmed genetic perturbations across multiple genomic sites in a pool of host cells subjected to a challenge, empowering researchers to identify genetic causes of desirable phenotypes. These genome-wide screens have been widely used in mammalian cells to discover biological mechanisms of diseases and drive the development of targeted drugs and therapeutics. Their use in non-model organisms, especially in microbes to improve bioprocessing-relevant phenotypes, has been limited. Further compounding this issue is the lack of bioinformatic algorithms for analyzing microbial screening data with high accuracy. Here, we describe the general approach and underlying principles for conducting pooled CRISPR knockout screens in non-conventional yeasts and performing downstream analysis of the screening data, while also reviewing state-of-the-art algorithms for identification of CRISPR screening outcomes. Application of pooled CRISPR screens to non-model yeasts holds considerable potential to uncover novel metabolic engineering targets and improve industrial bioproduction.

One-sentence Summary: This mini-review describes experimental and computational approaches for functional genomic screening using CRISPR technologies in non-conventional microbes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124124PMC
http://dx.doi.org/10.1093/jimb/kuad006DOI Listing

Publication Analysis

Top Keywords

crispr screens
16
pooled crispr
12
screens non-conventional
8
non-conventional microbes
8
screening data
8
screens
6
crispr
6
analyzing crispr
4
microbes unlabelled
4
unlabelled multifaceted
4

Similar Publications

Rapid, sensitive, and visual detection of mandarin fish ranavirus and infectious spleen and kidney necrosis virus using an RPA-CRISPR/Cas12a system.

Front Microbiol

December 2024

School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China.

Iridoviruses are large cytoplasmic icosahedral viruses that contain dsDNA. Among them, mandarin fish ranavirus (MRV) and infectious spleen and kidney necrosis virus (ISKNV) are particularly notable due to their high contagiousness and pathogenicity. These viruses pose a significant threat to fish aquaculture, resulting in substantial annual economic losses for the fish farming industry.

View Article and Find Full Text PDF

Molecular pathological characteristics and mechanisms of the liver in metabolic disease-susceptible transgenic pigs.

Life Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. Electronic address:

Aims: This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis.

Materials And Methods: The triple-transgenic (PNPLA3-GIPR-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials.

View Article and Find Full Text PDF

Chicken genome-wide CRISPR library screen identifies potential candidates associated with Avian influenza virus infection.

Int J Biol Macromol

December 2024

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei 430070, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease prevention, Guangzhou, Guangdong 510000, China. Electronic address:

The avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Systematic identification of host factors involved in AIV infection in chicken is critical. In this study, we developed a comprehensive chicken genome-wide sgRNA library containing 76,350 sgRNAs, with 4-6 sgRNAs designed per gene.

View Article and Find Full Text PDF

A new method for identifying proteins involved in DNA methylation through reverse genetics in Arabidopsis.

Plant Sci

December 2024

National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. Electronic address:

Forward genetic screens have uncovered numerous genes involved in DNA methylation regulation, but these methods are often time-intensive, costly, and labor-intensive. To address these limitations, this study utilized CRISPR technology to knockout selected co-expressed genes, enabling the rapid identification of low luciferase (LUC) luminescence mutants in the Col-LUC line, which harbors a LUC transgene driven by a 2×35S promoter in Arabidopsis. As proof of concept, the repressor of silencing 1 (ROS1) and RNA-directed DNA methylation 1 (RDM1) genes were used as controls, while the increased DNA methylation 3 (IDM3) gene, co-expressed with ROS1, was selected as the target for gene knockout experiments.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!