This study was conducted in Badri cattle using a double digest restriction-site associated DNA sequencing approach. The study aimed to identify and annotate high confidence single nucleotide polymorphisms (SNPs) and their mapping in candidate genes related to production and fertility in dairy cattle. A total of 7,168,552 genome-wide SNPs were initially identified in Badri cattle by alignment with the Bos indicus reference genome. After filtration of SNPs, 65,483 high confidence SNPs were retained and further used for downstream analysis. Annotation of high confidence SNPs revealed 99.197% SNPs had modifier impact, 0.326% SNPs were low impact, 0.036% were high impact, and 0.441% were moderate impact SNPs. Most SNPs in Badri cattle were found in intergenic, transcript and intronic regions. The candidate genes for milk production PRKCE, ABCG2, GHR, EPS8, CAST and NRXN1 were found to harbour maximum high confidence variants. Among candidate genes for fertility in cattle, ATP2B1, SOX5, WDR27, ARHGAP12, CACNA1D, ANKRD6, GRIA3, ZNF521 and CAST822 have maximum high confidence variants mapped in them. The SNPs found mapped in the candidate genes will be important genetic tools in the search for phenotype-modifying nucleotide changes and will aid in formulating relevant genetic improvement programmes for dairy cattle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11250-023-03535-1DOI Listing

Publication Analysis

Top Keywords

candidate genes
20
high confidence
20
badri cattle
16
snps
11
snps mapping
8
mapping candidate
8
genes milk
8
milk production
8
production fertility
8
dairy cattle
8

Similar Publications

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.

View Article and Find Full Text PDF

Background: The lesser grain borer, Rhyzopertha dominica, is a serious stored-products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management.

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!