The conversion of supplemental greenhouse light energy into biomass is not always optimal. Recent trends in global energy prices and discussions on climate change highlight the need to reduce our energy footprint associated with the use of supplemental light in greenhouse crop production. This can be achieved by implementing "smart" lighting regimens which in turn rely on a good understanding of how fluctuating light influences photosynthetic physiology. Here, a simple fit-for-purpose dynamic model is presented. It accurately predicts net leaf photosynthesis under natural fluctuating light. It comprises two ordinary differential equations predicting: 1) the total stomatal conductance to CO2 diffusion and 2) the CO2 concentration inside a leaf. It contains elements of the Farquhar-von Caemmerer-Berry model and the successful incorporation of this model suggests that for tomato (Solanum lycopersicum L.), it is sufficient to assume that Rubisco remains activated despite rapid fluctuations in irradiance. Furthermore, predictions of the net photosynthetic rate under both 400ppm and enriched 800ppm ambient CO2 concentrations indicate a strong correlation between the dynamic rate of photosynthesis and the rate of electron transport. Finally, we are able to indicate whether dynamic photosynthesis is Rubisco or electron transport rate limited.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019686PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275047PLOS

Publication Analysis

Top Keywords

fluctuating light
8
electron transport
8
small dynamic
4
dynamic leaf-level
4
model
4
leaf-level model
4
model predicting
4
photosynthesis
4
predicting photosynthesis
4
photosynthesis greenhouse
4

Similar Publications

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

Photosynthetic Induction Characteristics in Saplings of Four Sun-Demanding Trees and Shrubs.

Plants (Basel)

January 2025

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.

Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings of four sun-demanding woody species, . L.

View Article and Find Full Text PDF

The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO concentration (). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO. In this study, we experimentally investigated the influence of elevated CO (from 400 to 800 μmol mol) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, and .

View Article and Find Full Text PDF

Xiangshan Bay, one of China's most eutrophic semi-enclosed bays, was studied to examine the seasonal distributions of salinity, temperature, nutrients, and nitrate isotopes (δN and δO) to elucidate seasonal variations in nitrate sources and the key factors driving nitrogen level fluctuations. Based on nitrate δN (6.1-8.

View Article and Find Full Text PDF

Adenosine triphosphate (ATP), the primary energy currency in cells, is dynamically regulated across different subcellular compartments. The ATP interplay between mitochondria and endoplasmic reticulum (ER) underscores their coordinated roles in various biochemical processes, highlighting the necessity for precise profiling of subcellular ATP dynamics. Here we present an exogenously and endogenously dual-regulated DNA nanodevice for spatiotemporally selective, subcellular-compartment specific signal amplification in ATP sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!