The spatial resolution of typical sensor probes is sufficient for measuring the average electric properties of microelectrical devices, but they are unable to measure the distribution with a spatial precision. Liquid crystal droplets (LCDs) are promising candidate for visualizing the distribution. When voltage is applied, the LCDs show rotational and translational behaviors which depend on the location of LCDs within the devices. We demonstrate that by comparing the experimental and numerical results, the electric field and electrostatic energy distribution are visualized by rotating and transporting LCDs, with a spatial resolution of 10 µm and a detection accuracy of 5 µV/µm. In addition, we produced an array of LCDs by designing periodic modulation of the electrostatic energy density in the model device. These findings show that the LCDs serve as a periodic modulator of the refractive index as well as a sensor for the observation of electric properties of microelectrical devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020540 | PMC |
http://dx.doi.org/10.1038/s41598-023-31026-8 | DOI Listing |
Sci Rep
January 2025
Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia.
Skin cancer is one of the most common types of cancer worldwide, with exposure to UVB radiation being a significant risk factor for its development. To prevent skin cancer, continuous research efforts have focused on finding suitable photoprotective ingredients from natural sources that are also environmentally friendly. This study aimed to develop oil-in-water photoprotective nanoemulsions containing marine macroalgae extract.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, 87606, USA.
Topology optimization is a powerful technique that utilizes the distribution of material properties along with surface topology as parameters to expand a specified performance. While primarily used as a foundational step in regenerative design for structural mechanics, the general TO framework is also applicable to many of the complex issues in electromagnetics such as frequency agile mode converters. This is considered a difficult parameter to optimize since RF components operate on resonance.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.
View Article and Find Full Text PDFNat Commun
January 2025
Neuromorphic Computing Lab, Intel, Santa Clara, CA, USA.
Reservoir computing advances the intriguing idea that a nonlinear recurrent neural circuit-the reservoir-can encode spatio-temporal input signals to enable efficient ways to perform tasks like classification or regression. However, recently the idea of a monolithic reservoir network that simultaneously buffers input signals and expands them into nonlinear features has been challenged. A representation scheme in which memory buffer and expansion into higher-order polynomial features can be configured separately has been shown to significantly outperform traditional reservoir computing in prediction of multivariate time-series.
View Article and Find Full Text PDFNat Commun
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!