Background: Neural circuit function is highly sensitive to energetic limitations. Much like mammals, brain activity in American bullfrogs quickly fails in hypoxia. However, after emergence from overwintering, circuits transform to function for approximately 30-fold longer without oxygen using only anaerobic glycolysis for fuel, a unique trait among vertebrates considering the high cost of network activity. Here, we assessed neuronal functions that normally limit network output and identified components that undergo energetic plasticity to increase robustness in hypoxia.

Results: In control animals, oxygen deprivation depressed excitatory synaptic drive within native circuits, which decreased postsynaptic firing to cause network failure within minutes. Assessments of evoked and spontaneous synaptic transmission showed that hypoxia impairs synaptic communication at pre- and postsynaptic loci. However, control neurons maintained membrane potentials and a capacity for firing during hypoxia, indicating that those processes do not limit network activity. After overwintering, synaptic transmission persisted in hypoxia to sustain motor function for at least 2 h.

Conclusions: Alterations that allow anaerobic metabolism to fuel synapses are critical for transforming a circuit to function without oxygen. Data from many vertebrate species indicate that anaerobic glycolysis cannot fuel active synapses due to the low ATP yield of this pathway. Thus, our results point to a unique strategy whereby synapses switch from oxidative to exclusively anaerobic glycolytic metabolism to preserve circuit function during prolonged energy limitations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022038PMC
http://dx.doi.org/10.1186/s12915-023-01518-0DOI Listing

Publication Analysis

Top Keywords

circuit function
12
function oxygen
8
anaerobic glycolysis
8
glycolysis fuel
8
network activity
8
limit network
8
synaptic transmission
8
function
6
synaptic
5
synaptic modifications
4

Similar Publications

A Neural Circuit From Paraventricular Nucleus of the Thalamus to the Nucleus Accumbens Mediates Inflammatory Pain in Mice.

Brain Behav

January 2025

Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.

Background: Pain is a prevalent comorbidity in numerous clinical conditions and causes suffering; however, the mechanism of pain is intricate, and the neural circuitry underlying pain in the brain remains incompletely elucidated. More research into the perception and modulation of pain within the central nervous system is essential. The nucleus accumbens (NAc) plays a pivotal role in the regulation of animal behavior, and extensive research has unequivocally demonstrated its significant involvement in the occurrence and development of pain.

View Article and Find Full Text PDF

The mechanisms of electrical neuromodulation.

J Physiol

December 2024

Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada.

The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour.

View Article and Find Full Text PDF

Identification of benzimidazole-6-carboxamide based inhibitors of secretory glutaminyl cyclase for the treatment of Alzheimer's disease.

Int J Biol Macromol

December 2024

Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan. Electronic address:

The formation of the pyroglutamate variant of amyloid beta (pGlu-Aβ), which is extremely hydrophobic, rapidly aggregating, and highly neurotoxic, is mediated by the action of secretory glutaminyl cyclase (sQC). The pGlu-Aβ often acts as a seed for the aggregation of the full length Aβ and contributes to the overall load of Aβ plaques in Alzheimer's disease (AD). Therefore, inhibiting sQC is a potential approach to limit the formation of pGlu-Aβ and to modify the progression of AD.

View Article and Find Full Text PDF

Post traumatic stress disorder (PTSD) is characterized by anxiety, excessive fear, distress, and weakness as symptoms of a psychiatric disorder. However, the mechanism associated with its symptoms such as anxiety-like behaviors is not well understood. It is aimed to investigate the underlying mechanisms of the medial septum (MS)-medial habenula (MHb) neural circuit modulating the anxiety-like behaviors of PTSD mice through in vivo fiber photometry recording, optogenetics, behavioral testing by open-field and elevated plus maze, fluorescent gold retrograde tracer technology, and viral tracer technology.

View Article and Find Full Text PDF

Zebrafish as a model to understand extraocular motor neuron diversity.

Curr Opin Neurobiol

December 2024

Departments of Otolaryngology, Neuroscience, and the Neuroscience Institute, NYU Grossman School of Medicine, USA. Electronic address:

Motor neurons have highly diverse anatomical, functional and molecular features, and differ significantly in their susceptibility in disease. Extraocular motor neurons, residing in the oculomotor, trochlear and abducens cranial nuclei (nIII, nIV and nVI), control eye movements. Recent work has begun to clarify the developmental mechanisms by which functional diversity among extraocular motor neurons arises.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!