Background: The relationship between biomarkers of metabolic syndrome and insulin resistance, plasma triglyceride/HDL cholesterol (TG/HDL-C) ratio, on the rate of cognitive decline in mild cognitive impairment (MCI) and dementia stages of Alzheimer's disease (AD) is unknown. The role of peripheral and cerebrospinal fluid (CSF) levels of Apolipoprotein A1 (ApoA1), a key functional component of HDL, on cognitive decline also remains unclear among them. Here we evaluate baseline plasma TG/HDL-C ratio and CSF and plasma ApoA1 levels and their relation with cognitive decline in the MCI and Dementia stages of AD.

Patients And Methods: A retrospective longitudinal study (156 participants; 106 MCI, 50 AD dementia) from the Alzheimer's Disease Neuroimaging Initiative, with an average of 4.0 (SD 2.8) years follow-up. Baseline plasma TG/HDL-C, plasma, and CSF ApoA1 and their relationship to inflammation and blood-brain barrier (BBB) biomarkers and longitudinal cognitive outcomes were evaluated. Multivariable linear mixed effect models were used to assess the effect of baseline analytes with longitudinal changes in Mini-Mental State Exam (MMSE), Clinical Dementia Rating-Sum of Boxes (CDR-SB), and Logical Memory delayed recall (LM) score after controlling for well-known covariates.

Results: A total of 156 participants included 98 women, 63%; mean age was 74.9 (SD 7.3) years. At baseline, MCI and dementia groups did not differ significantly in TG/HDL-C (Wilcoxon W statistic = 0.39, p = 0.39) and CSF ApoA1 levels (W = 3642, p = 0.29), but the dementia group had higher plasma ApoA1 than the MCI group (W = 4615, p = 0.01). Higher TG/HDL-C ratio was associated with faster decline in CDR-SB among MCI and dementia groups. Higher plasma ApoA1 was associated with faster decline in MMSE and LM among MCI, while in contrast higher CSF ApoA1 levels related to slower cognitive decline in MMSE among MCI. CSF and plasma ApoA1 also show opposite directional correlations with biomarkers of BBB integrity. CSF but not plasma levels of ApoA1 positively correlated to inflammation analytes in the AGE-RAGE signaling pathway in diabetic complications (KEGG ID:KO04933).

Conclusions: Biomarkers of metabolic syndrome relate to rate of cognitive decline among MCI and dementia individuals. Elevated plasma TG/HDL-C ratio and plasma ApoA1 are associated with worse cognitive outcomes in MCI and dementia participants. CSF ApoA1 and plasma ApoA1 likely have different roles in AD progression in MCI stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018847PMC
http://dx.doi.org/10.1186/s13195-023-01203-yDOI Listing

Publication Analysis

Top Keywords

mci dementia
32
cognitive decline
24
plasma apoa1
24
tg/hdl-c ratio
16
csf apoa1
16
metabolic syndrome
12
rate cognitive
12
mci
12
decline mci
12
dementia stages
12

Similar Publications

With advances in biomarker-based detection of Alzheimer's disease (AD) and new treatment options with disease-modifying treatments (DMTs), we are heading toward a new conceptualization of diagnostics and therapy in the early stages of AD. Yet consensus guidelines on best clinical practices in predictive AD diagnostics are still developing. Currently, there is a knowledge gap regarding counseling and disclosure practices in early symptomatic disease stages, its implications for dementia risk estimation, and DMTs with associated risks and benefits.

View Article and Find Full Text PDF

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.

View Article and Find Full Text PDF

Microstructural mapping of neural pathways in Alzheimer's disease using macrostructure-informed normative tractometry.

Alzheimers Dement

December 2024

Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA.

Introduction: Diffusion-weighted magnetic resonance imaging (dMRI) is sensitive to the microstructural properties of brain tissues and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest without considering the underlying fiber geometry.

Methods: We propose a novel macrostructure-informed normative tractometry (MINT) framework to investigate how white matter (WM) microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia.

View Article and Find Full Text PDF

Prevalence and associations of cerebral microbleeds in an Australian memory clinic cohort.

Intern Med J

December 2024

Medical and Cognitive Research Unit, Department of Geriatric Medicine, Austin Health, Melbourne, Victoria, Australia.

Background: Cerebral microbleeds (CMBs) are small brain haemorrhages, identified by magnetic resonance imaging (MRI). They indicate potential for cognitive decline and mortality in memory clinic attendees. The presence of more than four CMBs is exclusionary for some clinical trials of disease-modifying therapies for Alzheimer's disease (AD).

View Article and Find Full Text PDF

Background: The relationship between subregion atrophy in the entire temporal lobe and subcortical nuclei and cognitive decline at various stages of Alzheimer's disease (AD) is unclear.

Methods: We selected 711 participants from the AD Neuroimaging Initiative (ADNI) database, which included 195 cases of cognitively normal (CN), 271 cases of early Mild cognitive impairment (MCI) (EMCI), 132 cases of late MCI (LMCI), and 113 cases of AD. we looked at how subregion atrophy in the temporal lobe and subcortical nuclei correlated with cognition at different stages of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!