Forced Interactions: Ionic Polymers at Charged Surfactant Interfaces.

J Phys Chem B

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.

Published: March 2023

Characterizing electrostatic interactions at heterogeneous interfaces is critical for developing a fundamental description of the dynamic processes at charged interfaces. Water-in-oil reverse micelles (RMs) offer a high degree of tunability across composition, polarity, and temperature, making them ideal systems for studying interactions at heterogeneous liquid-liquid interfaces. In the present study, we use a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics (MD) simulations to determine the picosecond interfacial dynamics in RMs containing binary compositions of sorbitan monostearate and anionic or cationic cosurfactants, which are used to tune the ratio of charged to nonionic surfactants at the interface. The positively charged polyethylenimine (PEI) polymer is encapsulated within the RMs, and the carbonyl stretching mode of sorbitan monostearate reports on the interfacial hydrogen-bond populations and dynamics. The results show that hydrogen-bond populations are altered through the inclusion of both negatively and positively charged cosurfactants. Charged surfactants increase interfacial water penetration into the surfactant layer, and the surface localization of polymers decreases water penetration. Local hydrogen-bond dynamics undergo a slowdown with the inclusion of charged surfactants, and the encapsulation of polymers results in similar effects, irrespective of the charge.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c08636DOI Listing

Publication Analysis

Top Keywords

interactions heterogeneous
8
sorbitan monostearate
8
positively charged
8
hydrogen-bond populations
8
charged surfactants
8
water penetration
8
charged
7
forced interactions
4
interactions ionic
4
ionic polymers
4

Similar Publications

In this work, we describe a computational tool designed to determine the local dielectric constants (ε) of charge-neutral heterogeneous systems by analyzing dipole moment fluctuations from molecular dynamics (MD) trajectories. Unlike conventional methods, our tool can calculate dielectric constants for dynamically evolving selections of molecules within a defined region of space, rather than for fixed sets of molecules. We validated our approach by computing the dielectric constants of TIP3P water nanospheres, achieving results consistent with literature values for bulk water.

View Article and Find Full Text PDF

The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a malignant cancer with a high mortality and limited treatment options. Systemic chemotherapy remains the only approach for improving survival in patients with unresectable locally advanced and/or metastatic disease which comprises most patients. Targeted therapies have so far been disappointing with limited applicability and improvement in overall survival.

View Article and Find Full Text PDF

Introduction: Medical progress has significantly improved the survival rates of very preterm-born infants in recent decades. Nevertheless, these infants are still at increased risk for long-term impairments as compared with term-born infants. While the homecoming of a preterm-born infant is long-awaited and brings relief to families, it also marks the end of intensive monitoring and highly specialised professional care.

View Article and Find Full Text PDF

Biosorption of cobalt (II) from an aqueous solution over acid modified date seed biochar: an experimental and mass transfer studies.

Environ Sci Pollut Res Int

January 2025

Department of Chemical Engineering, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.

Water pollution because of the presence of heavy metals remains a serious worry. The present work demonstrates the exclusion of cobalt ion (or Co(II)) from water using novel and cost-effective biosorbents. Initially, the biosorbent was chemically modified using orthophosphoric acid and then subjected to calcination to result acid modified date seed biochar (AMDB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!