A variety of intermetallic compounds possesses high enthalpies of formation. These compounds may be formed from reactive compacts or nanostructures comprised of unreacted precursor metals. These precursor structures support self-propagating high temperature synthesis (SHS) reactions which afford very high specific energy densities and rates, with excellent spatial control and a variety of useful applications. The present work compares the reactivity of notional bimetallic nanostructures based on well-known triply periodic minimal surfaces (TPMSes) with the popular reactive nanolaminate (RNL) modality for the Ni/Al system, using a molecular dynamics approach. TPMS-derived nanostructures were found to have lower ignition energies and faster reaction rates than RNLs of comparable periodicity, while the maximum achievable temperature of ignitions was found to be modulated by a complex interplay of factors including reaction rate and specific metal/metal interface density. Nanostructure reactivity and thermochemistry is also affected by effective diffusion dimensionality and recalescent precipitation of intermetallic crystallites. The TPMS-derived reactive nanostructures presented herein anticipate plausible advances in nanofabrication technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c22241 | DOI Listing |
Langmuir
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed.
View Article and Find Full Text PDFChem Rec
December 2024
Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh.
Nitrate (NO ) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO reduction (ECNR) offers a sustainable alternative, converting NO into environmentally benign nitrogen (N) or valuable ammonia (NH).
View Article and Find Full Text PDFACS Nano
December 2024
University Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
This article describes an approach to making highly stable copper nanowire networks on any type of substrates. These nanostructured materials are highly sought after for, among other applications, the development of next-generation flexible electronics. Their high susceptibility to oxidation in air currently limits their use in the real world.
View Article and Find Full Text PDFFood Res Int
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia. Electronic address:
In this study, an electroluminescent (ECL) aptasensor that could efficiently and sensitively detect acetamiprid (ACE) in vegetables was constructed based on an exonuclease-assisted target cycling amplification strategy. Bimetallic RuZn-based metal-organic framework (RuZn-MOF), nucleic acid exonuclease VII (Exo VII) and tetrahedral DNA nanostructure (TDN) were used as constituent materials. First, RuZn-MOF was a substrate material with good luminescence performance and was synthesized by a hydrothermal method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!